37 resultados para Proinflammatory cytokines

em Helda - Digital Repository of University of Helsinki


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paracrine regulation between the components of the tumour microenvironment cancer cells, activated fibroblasts, immune and endothelial cells is under intense investigation. The signals between the different cell types are mediated by soluble factors, such as growth factors, proinflammatory cytokines and proteolytic enzymes. Nemosis is an experimental in vitro model of fibroblast activation, leading to increased production of such mediators. Nemotic activation of fibroblasts occurs as they are forced to cluster thereby forming a multicellular spheroid. The aim of the present studies was to elucidate the mechanisms underlying the nemotic response of cancer-associated fibroblasts (CAF) and the role of nemosis in paracrine regulation between activated fibroblasts and benign and malignant epithelial cells. The results presented in this thesis demonstrate that the nemotic response of CAFs and normal fibroblasts differs, and inter-individual variations exist between fibroblast populations. In co-culture experiments, fibroblasts increased colony formation of squamous cell carcinoma (SCC) cells, and CAFs further augmented this, highlighting the tumour-evolving properties of CAFs. Furthermore, fibroblast monolayers in those co-cultures started to cluster spontaneously. This kind of spontaneous nemosis response might take place also in vivo, although more direct evidence of this still needs to be obtained. The HaCaT skin carcinoma progression model was used to study the effects of benign and malignant keratinocytes on fibroblast nemosis. Benign HaCaT cells inhibited fibroblast nemosis, observed as inhibition of cyclooxygenase 2 (COX-2) induction in nemotic spheroids. In contrast, malignant HaCaTs further augmented the nemotic response by increasing expression of COX-2 and the growth factors hepatocyte growth factor / scatter factor (HGF/SF) and vascular endothelial growth factor (VEGF), as well as causing a myofibroblastic differentiation of nemotic fibroblasts into fibroblasts resembling CAFs. On the other side of this reciprocal signalling, factors secreted into conditioned medium by the nemotic fibroblasts promoted proliferation and motility of the HaCaT cell lines. Notably, the nemotic fibroblast medium increased the expression of p63, a transcription factor linked to carcinogenesis, also in the highly metastatic HaCaT cells. These results emphasize the paracrine role of factors secreted by activated fibroblasts in driving tumour progression. We also investigated the epithelial-mesenchymal transition (EMT) of the HaCaT clones in response to transforming growth factor β (TGF-β), which is a well-characterized inducer of EMT. TGF-β caused growth arrest and loss of epithelial cell junctions in the HaCaT derivatives, but mesenchymal markers were not induced, suggesting a partial, but not complete EMT response. Inflammation induced by COX-2 has been proposed to be a key mechanism in EMT of benign cells. Corroborating this notion, COX-2 was induced only in benign, not in malignant HaCaT derivatives. Furthermore, in cells in which TGF-β caused COX-2 induction, migration was clearly augmented. The concept of treating cancer is changing from targeting solely the cancer cells to targeting the whole microenvironment. The results of this work emphasise the role of activated fibroblasts in cancer progression and that CAFs should also be taken into consideration in the treatment of cancer. The results from these studies suggests that nemosis could be used as a diagnostic tool to distinguish in vitro activated fibroblasts from tumour stroma and also in studying the paracrine signalling that is mediated to other cell types via soluble factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wound healing is a complex process that requires an interplay between several cell types. Classically, fibroblasts have been viewed as producers of extracellular matrix, but more recently they have been recognized as orchestrators of the healing response, promoting and directing, inflammation and neovascularization processes. Compared to those from healthy tissue, inflammation-associated fibroblasts display a dramatically altered phenotype and have been described as sentinel cells, able to switch to an immunoregulatory profile on cue. However, the activation mechanism still remains largely uncharacterized. Nemosis is a model for stromal fibroblast activation. When normal human primary fibroblasts are deprived of growth support they cluster, forming multicellular spheroids. Clustering results in upregulation of proinflammatory markers such as cyclooxygenase-2 and secretion of prostaglandins, proteinases, cytokines, and growth factors. Fibroblasts in nemosis induce wound healing and tumorigenic responses in many cell types found in inflammatory and tumor microenvironments. This study investigated the effect of nemotic fibroblasts on two components of the vascular system, leukocytes and endothelium, and characterized the inflammation-promoting responses that arose in these cell types. Fibroblasts in nemosis were found to secrete an array of chemotactic cytokines and attract leukocytes, as well as promote their adhesion to the endothelium. Nuclear factor-kB, the master regulator of many inflammatory responses, is activated in nemotic fibroblasts. Nemotic fibroblasts are known to produce large amounts of hepatocyte growth factor, a motogenic and angiogenic factor. Also, as shown in this study, they produce vascular endothelial growth factor. These two factors induced migratory and sprouting responses in endothelial cells, both required for neovascularization. Nemotic fibroblasts also caused a decrease in the expression of adherens and tight junction components on the surface of endothelial cells. The results allow the conclusion that fibroblasts in nemosis share many similarities with inflammation-associated fibroblasts. Both inflammation and stromal fibroblasts are known to be involved in tumorigenesis and tumor progression. Nemosis may be viewed as a model for stromal fibroblast activation, or it may correlate with cell-cell interactions between adjacent fibroblasts in vivo. Nevertheless, due to nemosis-derived production of proinflammatory cytokines and growth factors, fibroblast nemosis may have therapeutic potential as an inducer of controlled tissue repair. Knowledge of stromal fibroblast activation gained through studies of nemosis, could provide new strategies to control unwanted inflammation and tumor progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Periodontal Disease affects the supporting structures of the teeth and is initiated by a microbial biofilm called dental plaque. Severity ranges from superficial inflammation of the gingiva (gingivitis) to extensive destruction of connective tissue and bone leading to tooth loss (periodontitis). In periodontitis the destruction of tissue is caused by a cascade of microbial and host factors together with proteolytic enzymes. Matrix metalloproteinases (MMPs) are known to be central mediators of the pathologic destruction in periodontitis. Initially plaque bacteria provide pathogen-associated molecular patterns (PAMPs) which are sensed by Toll-like receptors (TLRs), and initiate intracellular signaling cascades leading to host inflammation. Our aim was to characterize TNF-α (tumor necrosis factor-alpha) and its type I and II receptors in periodontal tissues, as well as, the effects of TNF-α, IL-1β (interleukin-1beta) and IL-17 on the production and/or activation of MMP-3, MMP-8 and MMP-9. Furthermore we mapped the TLRs in periodontal tissues and assessed how some of the PAMPs binding to the key TLRs found in periodontal tissues affect production of TNF-α and IL-1β by gingival epithelial cells with or without combination of IL-17. TNF-α and its receptors were detected in pericoronitis. Furthermore, increased expression of interleukin-1β and vascular cell adhesion molecule-1 was found as a biological indicator of TNF-α ligand-receptor interaction. MMP-3, -8, and 9 were investigated in periodontitis affected human gingival crevicular fluid and gingival fibroblasts produced pro-MMP-3. Following that, the effect of IL-17 was studied on MMP and pro-inflammatory cytokine production. IL-17 was increased in periodontitis and up-regulated IL-1β, TNF-α, MMP-1 and MMP-3. We continued by demonstrating TLRs in gingival tissues, in which significant differences between patients with periodontitis and healthy controls were found. Finally, enzyme-linked immunosorbent assays were performed to show that the gingival cells response to inflammatory responses in a TLR-dependent manner. Briefly, this thesis demonstrates that TLRs are present in periodontal tissues and present differences in periodontitis compared to healthy controls. The cells of gingival tissues respond to inflammatory process in a TLR-dependent manner by producing pro-inflammatory cytokines. During the destruction of periodontal tissues, the release (IL-1β and TNF-α) and co-operation with other pro-inflammatory cytokines (IL-17), which in turn increase the inflammation and thus be more harmful to the host with the increased presence of MMPs (MMP-1, MMP-3, MMP-8, MMP-9) in diseased over healthy sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atherosclerosis is an inflammatory disease progressing over years via the accumulation of cholesterol in arterial intima with subsequent formation of atherosclerotic plaques. The stability of a plaque is determined by the size of its cholesterol-rich necrotic lipid core and the thickness of the fibrous cap covering it. The strength and thickness of the cap are maintained by smooth muscle cells and the extracellular matrix produced by them. A plaque with a large lipid core and a thin cap is vulnerable to rupture that may lead to acute atherothrombotic events, such as myocardial infarction and stroke. In addition, endothelial erosion, possibly induced by apoptosis of endothelial cells, may lead to such clinical events. One of the major causes of plaque destabilization is inflammation induced by accumulated and modified lipoproteins, and exacerbated by local aberrant shear stress conditions. Macrophages, T-lymphocytes and mast cells infiltrate particularly into the plaque’s shoulder regions prone to atherothrombotic events, and they are present at the actual sites of plaque rupture and erosion. Two major mechanisms of plaque destabilization induced by inflammation are extracellular matrix remodeling and apoptosis. Mast cells are bone marrow-derived inflammatory cells that as progenitors upon chemotactic stimuli infiltrate the target tissues, such as the arterial wall, differentiate in the target tissues and mediate their effects via the release of various mediators, typically in a process called degranulation. The released preformed mast cell granules contain proteases such as tryptase, chymase and cathepsin G bound to heparin and chondroitin sulfate proteoglycans. In addition, various soluble mediators such as histamine and TNF-alpha are released. Mast cells also synthesize many mediators such as cytokines and lipid mediators upon activation. Mast cells are capable of increasing the level of LDL cholesterol in the arterial intima by increasing accumulation and retention of LDL and by decreasing removal of cholesterol by HDL in vitro. In addition, by secreting proinflammatory mediators and proteases, mast cells may induce plaque destabilization by inducing apoptosis of smooth muscle and endothelial cells. Also in vivo data from apoE-/- and ldlr-/- mice suggest a role for mast cells in the progression of atherosclerosis. Furthermore, mast cell-deficient mice have become powerful tools to study the effects of mast cells in vivo. In this study, evidence suggesting a role for mast cells in the regulation of plaque stability is presented. In a mouse model genetically susceptible to atherosclerosis, mast cell deficiency (ldlr-/-/KitW-sh/W-sh mice) was associated with a less atherogenic lipid profile, a decreased level of lipid accumulation in the aortic arterial wall and a decreased level of vascular inflammation as compared to mast-cell competent littermates. In vitro, mast cell chymase-induced smooth muscle cell apoptosis was mediated by inhibition of NF-kappaB activity, followed by downregulation of bcl-2, release of cytochrome c, and activation of caspase-8, -9 and -3. Mast cell-induced endothelial cell apoptosis was mediated by chymase and TNF-alpha, and involved chymase-mediated degradation of fibronectin and vitronectin, and inactivation of FAK- and Akt-mediated survival signaling. Subsequently, mast cells induced inhibition of NF-kappaB activity and activation of caspase-8 and -9. In addition, possible mast cell protease-mediated mechanisms of endothelial erosion may include degradation of fibronectin and VE-cadherin. Thus, the present results suggest a role for mast cells in destabilization of atherosclerotic plaques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute renal failure (ARF) is a clinical syndrome characterized by rapidly decreasing glomerular filtration rate, which results in disturbances in electrolyte- and acid-base homeostasis, derangement of extracellular fluid volume, and retention of nitrogenous waste products, and is often associated with decreased urine output. ARF affects about 5-25% of patients admitted to intensive care units (ICUs), and is linked to high mortality and morbidity rates. In this thesis outcome of critically ill patients with ARF and factors related to outcome were evaluated. A total of 1662 patients from two ICUs and one acute dialysis unit in Helsinki University Hospital were included. In study I the prevalence of ARF was calculated and classified according to two ARF-specific scoring methods, the RIFLE classification and the classification created by Bellomo et al. (2001). Study II evaluated monocyte human histocompatibility leukocyte antigen-DR (HLA-DR) expression and plasma levels of one proinflammatory (interleukin (IL) 6) and two anti-inflammatory (IL-8 and IL-10) cytokines in predicting survival of critically ill ARF patients. Study III investigated serum cystatin C as a marker of renal function in ARF and its power in predicting survival of critically ill ARF patients. Study IV evaluated the effect of intermittent hemodiafiltration (HDF) on myoglobin elimination from plasma in severe rhabdomyolysis. Study V assessed long-term survival and health-related quality of life (HRQoL) in ARF patients. Neither of the ARF-specific scoring methods presented good discriminative power regarding hospital mortality. The maximum RIFLE score for the first three days in the ICU was an independent predictor of hospital mortality. As a marker of renal dysfunction, serum cystatin C failed to show benefit compared with plasma creatinine in detecting ARF or predicting patient survival. Neither cystatin C nor plasma concentrations of IL-6, IL-8, and IL-10, nor monocyte HLA-DR expression were clinically useful in predicting mortality in ARF patients. HDF may be used to clear myoglobin from plasma in rhabdomyolysis, especially if the alkalization of diuresis does not succeed. The long-term survival of patients with ARF was found to be poor. The HRQoL of those who survive is lower than that of the age- and gender-matched general population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The upstream proinflammatory interleukin-1 (IL-1) cytokines, together with a naturally occurring IL-1 receptor antagonist (IL-1Ra), play a significant role in several diseases and physiologic conditions. The IL-1 proteins affect glucose homeostasis at multiple levels contributing to vascular injuries and metabolic dysregulations that precede diabetes. An association between IL-1 gene variations and IL-1Ra levels has been suggested, and genetic studies have reported associations with metabolic dysregulation and altered inflammatory responses. The principal aims of this study were to: 1) examine the associations of IL-1 gene variation and IL-1Ra expression in the development and persistence of thyroid antibodies in subacute thyroiditis; 2) investigate the associations of common variants in the IL-1 gene family with plasma glucose and insulin concentrations, glucose homeostasis measures and prevalent diabetes in a representative population sample; 3) investigate genetic and non-genetic determinants of IL-1Ra phenotypes in a cross-sectional setting in three independent study populations; 4) investigate in a prospective setting (a) whether variants of the IL-1 gene family are predictors for clinically incident diabetes in two population-based observational cohort studies; and (b) whether the IL-1Ra levels predict the progression of metabolic syndrome to overt diabetes during the median follow-up of 10.8 and 7.1 years. Results from on patients with subacte thyroiditis showed that the systemic IL-1Ra levels are elevated during a specific proinflammatory response and they correlated with C-reactive protein (CRP) levels. Genetic variation in the IL-1 family seemed to have an association with the appearance of thyroid peroxidase antibodies and persisting local autoimmune responses during the follow-up. Analysis of patients suffering from diabetes and metabolic traits suggested that genetic IL-1 variation and IL-1Ra play a role in glucose homeostasis and in the development of type 2 diabetes. The coding IL-1 beta SNP rs1143634 was associated with traits related to insulin resistance in cross-sectional analyses. Two haplotype variants of the IL-1 beta gene were associated with prevalent diabetes or incident diabetes in a prospective setting and both of these haplotypes were tagged by rs1143634. Three variants of the IL-1Ra gene and one of the IL-1 beta gene were consistently identified as significant, independent determinants of the IL-1Ra phenotype in two or three populations. The proportion of the phenotypic variation explained by the genetic factors was modest however, while obesity and other metabolic traits explained a larger part. Body mass index was the strongest predictor of systemic IL-1Ra concentration overall. Furthermore, the age-adjusted IL-1Ra concentrations were elevated in individuals with metabolic syndrome or diabetes when compared to those free of metabolic dysregulation. In prospective analyses the systemic IL-1Ra levels were found as independent predictors for the development of diabetes in people with metabolic syndrome even after adjustment for multiple other factors, including plasma glucose and CRP levels. The predictive power of IL-1Ra was better than that of CRP. The prospective results also provided some evidence for a role of common IL-1 alpha promoter SNP rs1800587 in the development of type 2 diabetes among men and suggested that the role may be gender specific. Likewise, common variations in the IL-1 beta coding region may have a gender specific association with diabetes development. Further research on the potential benefits of IL-1Ra measurements in identifying individuals at high risk for diabetes, who then could be targeted for specific treatment interventions, is warranted. It has been reported in the recent literature that IL-1Ra secreted from adipose tissue has beneficial effects on glucose homeostasis. Furthermore, treatment with recombinant human IL-1Ra has been shown to have a substantial therapeutic potential. The genetic results from the prospective analyses performed in this study remain inconclusive, but together with the cross-sectional analyses they suggest gender-specific effects of the IL-1 variants on the risk of diabetes. Larger studies with more extensive genotyping and resequencing may help to pinpoint the exact variants responsible and to further elucidate the biological mechanisms for the observed associations. This would improve our understanding of the pathways linking inflammation and obesity with glucose and insulin metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fumonisin B1 (FB1) is a mycotoxin produced by the fungus Fusarium verticillioides, which commonly infects corn and other agricultural products. Fusarium species can also be found in moisture-damaged buildings, and therefore there may also be human exposure to Fusarium mycotoxins, including FB1. FB1 affects the metabolism of sphingolipids by inhibiting the enzyme ceramide synthase. It is neuro-, hepato- and nephrotoxic, and it is classified as possibly carcinogenic to humans. This study aimed to clarify the mechanisms behind FB1-induced neuro- and immunotoxicity. Four neural and glial cell lines of human, rat and mouse origin were exposed to graded doses of FB1 and the effects on the production of reactive oxygen species, lipid peroxidation, intracellular glutathione levels, cell viability and apoptosis were investigated. Furthermore, the effects of FB1, alone or together with lipopolysaccharide (LPS), on the mRNA and protein expression levels of different cytokines and chemokines were studied in human dendritic cells (DC). FB1 induced oxidative stress and cell death in all cell lines studied. Generally, the effects were only seen after prolonged exposure at 10 and 100 µM of FB1. Signs of apoptosis were also seen in all four cell lines. The sensitivities of the cell lines used in this study towards FB1 may be classified as human U-118MG glioblastoma > mouse GT1-7 hypothalamic > rat C6 glioblastoma > human SH-SY5Y neuroblastoma cells. When comparing cell lines of human origin, it can be concluded that glial cells seem to be more sensitive towards FB1 toxicity than those of neural origin. After exposure to FB1, significantly increased levels of the cytokine interferon-γ (IFNγ) were detected in human DC. This observation was further confirmed by FB1-induced levels of the chemokine CXCL9, which is known to be regulated by IFNγ. During co-exposure of DC to both LPS and FB1, significant inhibitions of the LPS-induced levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1β, and their regulatory chemokines CCL3 and CCL5 were observed. FB1 can thus affect immune responses in DC, and therefore, it is rather likely that it also affects other types of cells participating in the immune defence system. When evaluating the toxicity potential of FB1, it is important to consider the effects on different cell types and cell-cell interactions. The results of this study represent new information, especially about the mechanisms behind FB1-induced oxidative stress, apoptosis and immunotoxicity, as well as the varying sensitivities of different cell types towards FB1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Probiooteilla kantakohtaisia vaikutuksia ihmisen immuunijärjestelmään terveillä aikuisilla Probiooteilla on kantakohtaisia tulehduksen välittäjäaineita vähentäviä vaikutuksia ja probioottien yhdistelmien vaikutukset eroavat yksittäisten kantojen vaikutuksista selviää TtM Riina Kekkosen tuoreesta väitöstutkimuksesta. TtM Riina Kekkonen on selvittänyt väitöskirjassaan eri probioottikantojen vaikutuksia immuunivasteeseen valkosolumallissa sekä terveillä aikuisilla lumekontrolloiduissa kliinisissä tutkimuksissa. Aikaisemmin probioottien vaikutuksia on tutkittu lähinnä allergian ja erilaisten vatsavaivojen ehkäisyssä ja hoidossa. Probiootteja sisältäviä tuotteita käyttävät kuluttajat ovat kuitenkin useimmiten terveitä aikuisia, ja probioottien vaikutus terveiden aikuisten immuunijärjestelmään on ollut puutteellisesti selvitettyä. Valkosolumallissa probioottikantojen havaittiin poikkeavan toisistaan niiden kyvyssä aktivoida immuunivasteen välittäjäaineiden, sytokiinien, tuotantoa. Anti-inflammatorisia, eli tulehdusta lievittäviä vaikutuksia nähtiin lähinnä Bifidobacterium ja Propionibacterium sukuihin kuuluvilla kannoilla. Streptococcus ja Leuconostoc sukuihin kuuluvat kannat puolestaan aktivoivat Th1 tyyppistä, soluvälitteistä immuunivastetta. Eri probioottien kombinaatiot eivät saaneet aikaan voimakkaampaa aktivaatiota yksittäisiin kantoihin verrattuna, joka viittaa probioottien keskinäiseen kilpailuun niiden ollessa kontaktissa ihmisen solujen kanssa. Probioottikantojen valinta kliinisiin tutkimuksiin tehtiin niiden anti-inflammatoristen ominaisuuksien perusteella. Parhaita anti-inflammatorisia kantoja olivat B. lactis ssp. animalis Bb12 ja P. freudenreichii ssp. shermanii JS, joiden lisäksi tutkimuksiin valittiin myös L. rhamnosus GG (LGG) hyvin tutkittuna referenssikantana. Solutöiden tulokset eivät olleet täysin verrannollisia kliinisen työn tuloksiin, koska LGG näytti omaavan parhaat anti-inflammatoriset ominaisuudet kliinisissä tutkimuksissa vaikka solutyössä sen aikaansaamat vasteet olivat melko vaimeita. Kolmen viikon kliinisessä tutkimuksessa terveillä aikuisilla LGG alensi mm. tulehdusta kuvaavan C-reaktiivisen proteiinin ja inflammatoristen sytokiinien määrää. Pidemmässä kolmen kuukauden pituisessa kliinisessä tutkimuksessa LGG:llä ei ollut vaikutusta terveiden aikuisten infektiosairastavuuteen, mutta LGG lyhensi vatsavaivojen kestoa. Probioottien vaikutukset immuunijärjestelmään näyttävät olevan kantakohtaisia ja erityisesti Lactobacillus rhamnosus GG:llä havaittiin anti-inflammatorisia vaikutuksia. Valkosolumallia ei tulisi käyttää ainoana probioottikantojen skriinausmenetelmänä niiden immunologisia vaikutuksia selvitettäessä, koska solutöiden tulokset eivät olleet täysin verrannollisia kliinisten tutkimusten tuloksiin. Sen sijaan veren perifeeristen lymfosyyttien eristäminen ja niiden aktivoitumisen selvittäminen lyhytaikaisessa kliinisessä tutkimuksessa voisi toimia suhteellisen helppona skiinausmenetelmänä.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastrointestinal symptoms and impaired quality of life caused by irritable bowel syndrome (IBS) affect up to 20% of the adult population worldwide. The exact aetiology and pathophysiology of IBS are incompletely understood. Clinical studies suggest that supplementation with certain probiotics may be beneficial in IBS, but there is not enough evidence to make general recommendations. The aim of this thesis was to investigate microbiota- and mucosa-associated pathophysiological factors of IBS, and to evaluate the long-term effects of multispecies probiotic supplementation on symptoms, quality of life, intestinal microbiota and systemic inflammatory markers in IBS. The intestinal microbiota composition in IBS patients and healthy control subjects was analysed by quantitative polymerase chain reaction (qPCR). Significantly lower counts for the Clostridium coccoides and the Bifidobacterium catenulatum groups were found in IBS compared to controls. Quantitative differences also appeared in subgroup analysis based on the predominant bowel habit: diarrhoea patients harboured significantly lower numbers of Lactobacillus spp. than the constipation-predominant patients, while higher counts for Veillonella spp. were detected in constipation-predominant patients compared to healthy controls. Analysis of mucosal biopsies by a metabolomic approach revealed multiple differences between patients and controls. The most prominent finding was an upregulation of specific lipid species, principally lysophosphatidylcholines and ceramides, in IBS. The effects of multispecies probiotic supplementation with Lactobacillus rhamnosus GG, Lactobacillus rhamnosus Lc705, Propionibacterium freudenreichii subsp. shermanii JS, and Bifidobacterium breve Bb99 or Bifidobacterium animalis subsp. lactis Bb12 was evaluated in two, randomised, double-blind, placebo-controlled trials. Compared to placebo, the probiotic supplementation significantly reduced the total symptoms of IBS. No effects on bowel habit were seen. Health-related quality of life (HRQOL) is reduced in patients with IBS in comparison with the Finnish population on the whole. The probiotic supplementation improved one IBS-specific domain of quality of life (bowel symptoms), whereas no other effects on HRQOL were seen. The probiotics had no major effects on the predominant microbiota as measured by qPCR, but a microarray-based analysis suggested that the probiotic consumption stabilised the microbiota. No effects on serum sensitive-CRP or cytokines were detected. In conclusion, alterations in the microbiota composition and in the mucosal metabolite profile are potential pathophysiological factors of IBS. Multispecies probiotic supplementation alleviates the gastrointestinal symptoms of IBS, and improves the bowel symptoms domain of HRQOL. Probiotic supplementation in IBS is associated with a stabilisation of microbiota, but it does not influence systemic inflammatory markers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Enamel matrix derivative Emdogain® (EMD) is a commercially available tissue extract preparation of porcine enamel origin. Studies have shown EMD to be clinically useful in promoting periodontal regeneration. EMD has been widely used in periodontal therapy for over ten years, but the mechanism of its action and the exact composition are not completely clear. EMD is predominantly amelogenin (>90%). However, unlike amelogenin, EMD has a number of growth factor-like effects and it has been shown to enhance the proliferation, migration and other cellular functions of periodontal ligament fibroblasts and osteoblasts. In contrast, the effects of EMD on epithelial cell lines and in particular on oral malignant cells have not been adequately studied. In addition, EMD has effects on the production of cytokines by several oral cell lines and the product is in constant interaction with different oral enzymes. Regardless of the various unknown properties of EMD, it is said to be clinically safe in regenerative procedures, also in medically compromised patients. The aim of the study was to examine whether gingival crevicular fluid (GCF), which contains several different proteolysis enzymes, could degrade EMD and alter its biological functions. In addition, the objective was to study the effects of EMD on carcinogenesis-related factors, in particular MMPs, using in vitro and in vivo models. This study also aimed to contribute to the understanding of the composition of EMD. GCF was capable of degrading EMD, depending on the periodontal status, with markedly more degradation in all states of periodontal disease compared to healthy controls. EMD was observed to stimulate the migration of periodontal ligament fibroblasts (PLF), whereas EMD together with GCF could not stimulate this proliferation. In addition, recombinant amelogenin, the main component of EMD, decreased the migration of PLFs. A comparison of changes induced by EMD and TGF-β1 in the gene profiles of carcinoma cells showed TGF-β1 to regulate a greater number of genes than EMD. However, both of the study reagents enhanced the expression of MMP-10 and MMP-9. Furthermore, EMD was found to induce several factors closely related to carcinogenesis on gene, protein, cell and in vivo levels. EMD enhanced the production of MMP-2, MMP-9 and MMP-10 proteins by cultured carcinoma cells. In addition, EMD stimulated the migration and in vitro wound closure of carcinoma cells. EMD was also capable of promoting metastasis formation in mice. In conclusion, the diseased GCF, containing various proteases, causes degradation of EMD and decreased proliferation of PLFs. Thus, this in vitro study suggests that the regenerative effect of EMD may decrease due to proteases present in periodontal tissues during the inflammation and healing of the tissues in vivo. Furthermore, EMD was observed to enhance several carcinoma-related factors and in particular the production of MMPs by benign and malignant cell lines. These findings suggest that the clinical safety of EMD with regard to dysplastic mucosal lesions should be further investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) is a complex disease with multifactorial aetiology. Both genetic and environmental factors contribute to the disease risk. The lifetime risk for CVD differs markedly between men and women, men being at increased risk. Inflammatory reaction contributes to the development of the disease by promoting atherosclerosis in artery walls. In the first part of this thesis, we identified several inflammatory related CVD risk factors associating with the amount of DNA from whole blood samples, indicating a potential source of bias if a genetic study selects the participants based on the available amount of DNA. In the following studies, this observation was taken into account by applying whole genome amplification to samples otherwise subjected to exclusion due to very low DNA yield. We continued by investigating the contribution of inflammatory genes to the risk for CVD separately in men and women, and looked for sex-genotype interaction. In the second part, we explored a new candidate gene and its role in the risk for CVD. Selenoprotein S (SEPS1) is a membrane protein residing in the endoplasmic reticulum where it participates in retro-translocation of unfolded proteins to cytosolic protein degradation. Previous studies have indicated that SEPS1 protects cells from oxidative stress and that variations in the gene are associated with circulating levels of inflammatory cytokines. In our study, we identified two variants in the SEPS1 gene, which associated with coronary heart disease and ischemic stroke in women. This is, to our knowledge, the first study suggesting a role of SEPS1 in the risk for CVD after extensively examining the variation within the gene region. In the third part of this thesis, we focused on a set of seven genes (angiotensin converting enzyme, angiotensin II receptor type I, C-reactive protein (CRP), and fibrinogen alpha-, beta-, and gamma-chains (FGA, FGB, FGG)) related to inflammatory cytokine interleukin 6 (IL6) and their association with the risk for CVD. We identified one variant in the IL6 gene conferring risk for CVD in men and a variant pair from IL6 and FGA genes associated with decreased risk. Moreover, we identified and confirmed an association between a rare variant in the CRP gene and lower CRP levels, and found two variants in the FGA and FGG genes associating with fibrinogen. The results from this third study suggest a role for the interleukin 6 pathway genes in the pathogenesis of CVD and warrant further studies in other populations. In addition to the IL6 -related genes, we describe in this thesis several sex-specific associations in other genes included in this study. The majority of the findings were evident only in women encouraging other studies of cardiovascular disease to include and analyse women separately from men.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sepsis is associated with a systemic inflammatory response. It is characterised by an early proinflammatory response and followed by a state of immunosuppression. In order to improve the outcome of patients with infection and sepsis, novel therapies that influence the systemic inflammatory response are being developed and utilised. Thus, an accurate and early diagnosis of infection and evaluation of immune state are crucial. In this thesis, various markers of systemic inflammation were studied with respect to enhancing the diagnostics of infection and of predicting outcome in patients with suspected community-acquired infection. A total of 1092 acutely ill patients admitted to a university hospital medical emergency department were evaluated, and 531 patients with a suspicion of community-acquired infection were included for the analysis. Markers of systemic inflammation were determined from a blood sample obtained simultaneously with a blood culture sample on admission to hospital. Levels of phagocyte CD11b/CD18 and CD14 expression were measured by whole blood flow cytometry. Concentrations of soluble CD14, interleukin (IL)-8, and soluble IL-2 receptor α (sIL-2Rα) were determined by ELISA, those of sIL-2R, IL-6, and IL-8 by a chemiluminescent immunoassay, that of procalcitonin by immunoluminometric assay, and that of C-reactive protein by immunoturbidimetric assay. Clinical data were collected retrospectively from the medical records. No marker of systemic inflammation, neither CRP, PCT, IL-6, IL-8, nor sIL-2R predicted bacteraemia better than did the clinical signs of infection, i.e., the presence of infectious focus or fever or both. IL-6 and PCT had the highest positive likelihood ratios to identify patients with hidden community-acquired infection. However, the use of a single marker failed to detect all patients with infection. A combination of markers including a fast-responding reactant (CD11b expression), a later-peaking reactant (CRP), and a reactant originating from inflamed tissues (IL-8) detected all patients with infection. The majority of patients (86.5%) with possible but not verified infection showed levels exceeding at least one cut-off limit of combination, supporting the view that infection was the cause of their acute illness. The 28-day mortality of patients with community-acquired infection was low (3.4%). On admission to hospital, the low expression of cell-associated lipopolysaccharide receptor CD14 (mCD14) was predictive for 28-day mortality. In the patients with severe forms of community-acquired infection, namely pneumonia and sepsis, high levels of soluble CD14 alone did not predict mortality, but a high sCD14 level measured simultaneously with a low mCD14 raised the possibility of poor prognosis. In conclusion, to further enhance the diagnostics of hidden community-acquired infection, a combination of inflammatory markers is useful; 28-day mortality is associated with low levels of mCD14 expression at an early phase of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The matrix of blood is a liquid plasma that transports molecules and blood cells within vessels lined by endothelial cells. High-mobility group B1 (HMGB1) is a protein expressed in blood cells. Under normal circumstances, HMGB1 is virtually absent from plasma, but during inflammation or trauma its level in plasma is increased. In resting and quiescent cells, HMGB1 is usually localized in the intracellular compartment, with the exception of motile cells that express HMGB1 on their outer surface to mediate cell migration. During cell transformation or immune cell activation HMGB1 can be actively secreted outside of the cell. Further, when a cell is damaged, HMGB1 can passively leak into extracellular environment. Extracellular HMGB1 can then participate in regulation of the immune response and under some conditions it can mediate lethality in systemic inflammatory response. The aim of this study was to evaluate the expression and functions of HMGB1 in cells of the vascular system and to investigate the prognostic value of circulating HMGB1 in severe sepsis and septic shock. HMGB1 was detected in platelets, leukocytes, and endothelial cells. HMGB1 was released from platelets and leukocytes, and it was found to mediate their adhesive and migratory functions. During severe infections the plasma levels of HMGB1 were elevated; however, no direct correlation with lethality was found. Further, the analysis of proinflammatory mechanisms suggested that HMGB1 forms complexes with other molecules to activate the immune system. In conclusion, HMGB1 is expressed in the cells of the vascular system, and it participates in inflammatory mechanisms by activating platelets and leukocytes and by mediating monocyte migration.