39 resultados para Particle motion
em Helda - Digital Repository of University of Helsinki
Resumo:
In this dissertation we study the interaction between Saturn's moon Titan and the magnetospheric plasma and magnetic field. The method of research is a three-dimensional computer simulation model, that is used to simulate this interaction. The simulation model used is a hybrid model. Hybrid models enable individual tracking or tracing of ions and also take into account the particle motion in the propagation of the electromagnetic fields. The hybrid model has been developed at the Finnish Meteorological Institute. This thesis gives a general description of the effects that the solar wind has on Earth and other planets of our solar system. Planetary satellites can also have similar interactions with the solar wind but also with the plasma flows of planetary magnetospheres. Titan is clearly the largest among the satellites of Saturn and also the only known satellite with a dense atmosphere. It is the atmosphere that makes Titan's plasma interaction with the magnetosphere of Saturn so unique. Nevertheless, comparisons with the plasma interactions of other solar system bodies are valuable. Detecting charged plasma particles requires in situ measurements obtainable through scientific spacecraft. The Cassini mission has been one of the most remarkable international efforts in space science. Since 2004 the measurements and images obtained from instruments onboard the Cassini spacecraft have increased the scientific knowledge of Saturn as well as its satellites and magnetosphere in a way no one was probably able to predict. The current level of science on Titan is practically unthinkable without the Cassini mission. Many of the observations by Cassini instrument teams have influenced this research both the direct measurements of Titan as well as observations of its plasma environment. The theoretical principles of the hybrid modelling approach are presented in connection to the broader context of plasma simulations. The developed hybrid model is described in detail: e.g. the way the equations of the hybrid model are solved is shown explicitly. Several simulation techniques, such as the grid structure and various boundary conditions, are discussed in detail as well. The testing and monitoring of simulation runs is presented as an essential routine when running sophisticated and complex models. Several significant improvements of the model, that are in preparation, are also discussed. A main part of this dissertation are four scientific articles based on the results of the Titan model. The Titan model developed during the course of the Ph.D. research has been shown to be an important tool to understand Titan's plasma interaction. One reason for this is that the structures of the magnetic field around Titan are very much three-dimensional. The simulation results give a general picture of the magnetic fields in the vicinity of Titan. The magnetic fine structure of Titan's wake as seen in the simulations seems connected to Alfvén waves an important wave mode in space plasmas. The particle escape from Titan is also a major part of these studies. Our simulations show a bending or turning of Titan's ionotail that we have shown to be a direct result of the basic principles in plasma physics. Furthermore, the ion flux from the magnetosphere of Saturn into Titan's upper atmosphere has been studied. The modelled ion flux has asymmetries that would likely have a large impact in the heating in different parts of Titan's upper atmosphere.
Resumo:
The problem of recovering information from measurement data has already been studied for a long time. In the beginning, the methods were mostly empirical, but already towards the end of the sixties Backus and Gilbert started the development of mathematical methods for the interpretation of geophysical data. The problem of recovering information about a physical phenomenon from measurement data is an inverse problem. Throughout this work, the statistical inversion method is used to obtain a solution. Assuming that the measurement vector is a realization of fractional Brownian motion, the goal is to retrieve the amplitude and the Hurst parameter. We prove that under some conditions, the solution of the discretized problem coincides with the solution of the corresponding continuous problem as the number of observations tends to infinity. The measurement data is usually noisy, and we assume the data to be the sum of two vectors: the trend and the noise. Both vectors are supposed to be realizations of fractional Brownian motions, and the goal is to retrieve their parameters using the statistical inversion method. We prove a partial uniqueness of the solution. Moreover, with the support of numerical simulations, we show that in certain cases the solution is reliable and the reconstruction of the trend vector is quite accurate.
Resumo:
Emissions of coal combustion fly ash through real scale ElectroStatic Precipitators (ESP) were studied in different coal combustion and operation conditions. Sub-micron fly-ash aerosol emission from a power plant boiler and the ESP were determined and consequently the aerosol penetration, as based on electrical mobility measurements, thus giving thereby an indication for an estimate on the size and the maximum extent that the small particles can escape. The experimentals indicate a maximum penetration of 4% to 20 % of the small particles, as counted on number basis instead of the normally used mass basis, while simultaneously the ESP is operating at a nearly 100% collection efficiency on mass basis. Although the size range as such seems to appear independent of the coal, of the boiler or even of the device used for the emission control, the maximum penetration level on the number basis depends on the ESP operating parameters. The measured emissions were stable during stable boiler operation for a fired coal, and the emissions seemed each to be different indicating that the sub-micron size distribution of the fly-ash could be used as a specific characteristics for recognition, for instance for authenticity, provided with an indication of known stable operation. Consequently, the results on the emissions suggest an optimum particle size range for environmental monitoring in respect to the probability of finding traces from the samples. The current work embodies also an authentication system for aerosol samples for post-inspection from any macroscopic sample piece. The system can comprise newly introduced new devices, for mutually independent use, or, for use in a combination with each other, as arranged in order to promote the sampling operation length and/or the tag selection diversity. The tag for the samples can be based on naturally occurring measures and/or added measures of authenticity in a suitable combination. The method involves not only military related applications but those in civil industries as well. Alternatively to the samples, the system can be applied to ink for note printing or other monetary valued papers, but also in a filter manufacturing for marking fibrous filters.
Resumo:
The wave functions of moving bound states may be expected to contract in the direction of motion, in analogy to a rigid rod in classical special relativity, when the constituents are at equal (ordinary) time. Indeed, the Lorentz contraction of wave functions is often appealed to in qualitative discussions. However, only few field theory studies exist of equal-time wave functions in motion. In this thesis I use the Bethe-Salpeter formalism to study the wave function of a weakly bound state such as a hydrogen atom or positronium in a general frame. The wave function of the e^-e^+ component of positronium indeed turns out to Lorentz contract both in 1+1 and in 3+1 dimensional quantum electrodynamics, whereas the next-to-leading e^-e^+\gamma Fock component of the 3+1 dimensional theory deviates from classical contraction. The second topic of this thesis concerns single spin asymmetries measured in scattering on polarized bound states. Such spin asymmetries have so far mainly been analyzed using the twist expansion of perturbative QCD. I note that QCD vacuum effects may give rise to a helicity flip in the soft rescattering of the struck quark, and that this would cause a nonvanishing spin asymmetry in \ell p^\uparrow -> \ell' + \pi + X in the Bjorken limit. An analogous asymmetry may arise in p p^\uparrow -> \pi + X from Pomeron-Odderon interference, if the Odderon has a helicity-flip coupling. Finally, I study the possibility that the large single spin asymmetry observed in p p^\uparrow -> \pi(x_F,k_\perp) + X when the pion carries a high momentum fraction x_F of the polarized proton momentum arises from coherent effects involving the entire polarized bound state.
Resumo:
It is widely accepted that the global climate is heating up due to human activities, such as burning of fossil fuels. Therefore we find ourselves forced to make decisions on what measures, if any, need to be taken to decrease our warming effect on the planet before any irrevocable damage occurs. Research is being conducted in a variety of fields to better understand all relevant processes governing Earth s climate, and to assess the relative roles of anthropogenic and biogenic emissions into the atmosphere. One of the least well quantified problems is the impact of small aerosol particles (both of anthropogenic and biogenic origin) on climate, through reflecting solar radiation and their ability to act as condensation nuclei for cloud droplets. In this thesis, the compounds driving the biogenic formation of new particles in the atmosphere have been examined through detailed measurements. As directly measuring the composition of these newly formed particles is extremely difficult, the approach was to indirectly study their different characteristics by measuring the hygroscopicity (water uptake) and volatility (evaporation) of particles between 10 and 50 nm. To study the first steps of the formation process in the sub-3 nm range, the nucleation of gaseous precursors to small clusters, the chemical composition of ambient naturally charged ions were measured. The ion measurements were performed with a newly developed mass spectrometer, which was first characterized in the laboratory before being deployed at a boreal forest measurement site. It was also successfully compared to similar, low-resolution instruments. The ambient measurements showed that sulfuric acid clusters dominate the negative ion spectrum during new particle formation events. Sulfuric acid/ammonia clusters were detected in ambient air for the first time in this work. Even though sulfuric acid is believed to be the most important gas phase precursor driving the initial cluster formation, measurements of the hygroscopicity and volatility of growing 10-50 nm particles in Hyytiälä showed an increasing role of organic vapors of a variety of oxidation levels. This work has provided additional insights into the compounds participating both in the initial formation and subsequent growth of atmospheric new aerosol particles. It will hopefully prove an important step in understanding atmospheric gas-to-particle conversion, which, by influencing cloud properties, can have important climate impacts. All available knowledge needs to be constantly updated, summarized, and brought to the attention of our decision-makers. Only by increasing our understanding of all the relevant processes can we build reliable models to predict the long-term effects of decisions made today.
Resumo:
Aerosol particles play a role in the earth ecosystem and affect human health. A significant pathway of producing aerosol particles in the atmosphere is new particle formation, where condensable vapours nucleate and these newly formed clusters grow by condensation and coagulation. However, this phenomenon is still not fully understood. This thesis brings an insight to new particle formation from an experimental point of view. Laboratory experiments were conducted both on the nucleation process and physicochemical properties related to new particle formation. Nucleation rate measurements are used to test nucleation theories. These theories, in turn, are used to predict nucleation rates in atmospheric conditions. However, the nucleation rate measurements have proven quite difficult to conduct, as different devices can yield nucleation rates with differences of several orders of magnitude for the same substances. In this thesis, work has been done to have a greater understanding in nucleation measurements, especially those conducted in a laminar flow diffusion chamber. Systematic studies of nucleation were also made for future verification of nucleation theories. Surface tensions and densities of substances related to atmospheric new particle formation were measured. Ternary sulphuric acid + ammonia + water is a proposed candidate to participate in atmospheric nucleation. Surface tensions of an alternative candidate to nucleate in boreal forest areas, sulphuric acid + dimethylamine + water, were also measured. Binary compounds, consisting of organic acids + water are possible candidates to participate in the early growth of freshly nucleated particles. All the measured surface tensions and densities were fitted with equations, thermodynamically consistent if possible, to be easily applied to atmospheric model calculations of nucleation and subsequent evolution of particle size.
Resumo:
Aerosol particles in the atmosphere are known to significantly influence ecosystems, to change air quality and to exert negative health effects. Atmospheric aerosols influence climate through cooling of the atmosphere and the underlying surface by scattering of sunlight, through warming of the atmosphere by absorbing sun light and thermal radiation emitted by the Earth surface and through their acting as cloud condensation nuclei. Aerosols are emitted from both natural and anthropogenic sources. Depending on their size, they can be transported over significant distances, while undergoing considerable changes in their composition and physical properties. Their lifetime in the atmosphere varies from a few hours to a week. New particle formation is a result of gas-to-particle conversion. Once formed, atmospheric aerosol particles may grow due to condensation or coagulation, or be removed by deposition processes. In this thesis we describe analyses of air masses, meteorological parameters and synoptic situations to reveal conditions favourable for new particle formation in the atmosphere. We studied the concentration of ultrafine particles in different types of air masses, and the role of atmospheric fronts and cloudiness in the formation of atmospheric aerosol particles. The dominant role of Arctic and Polar air masses causing new particle formation was clearly observed at Hyytiälä, Southern Finland, during all seasons, as well as at other measurement stations in Scandinavia. In all seasons and on multi-year average, Arctic and North Atlantic areas were the sources of nucleation mode particles. In contrast, concentrations of accumulation mode particles and condensation sink values in Hyytiälä were highest in continental air masses, arriving at Hyytiälä from Eastern Europe and Central Russia. The most favourable situation for new particle formation during all seasons was cold air advection after cold-front passages. Such a period could last a few days until the next front reached Hyytiälä. The frequency of aerosol particle formation relates to the frequency of low-cloud-amount days in Hyytiälä. Cloudiness of less than 5 octas is one of the factors favouring new particle formation. Cloudiness above 4 octas appears to be an important factor that prevents particle growth, due to the decrease of solar radiation, which is one of the important meteorological parameters in atmospheric particle formation and growth. Keywords: Atmospheric aerosols, particle formation, air mass, atmospheric front, cloudiness
Resumo:
Aerosols impact the planet and our daily lives through various effects, perhaps most notably those related to their climatic and health-related consequences. While there are several primary particle sources, secondary new particle formation from precursor vapors is also known to be a frequent, global phenomenon. Nevertheless, the formation mechanism of new particles, as well as the vapors participating in the process, remain a mystery. This thesis consists of studies on new particle formation specifically from the point of view of numerical modeling. A dependence of formation rate of 3 nm particles on the sulphuric acid concentration to the power of 1-2 has been observed. This suggests nucleation mechanism to be of first or second order with respect to the sulphuric acid concentration, in other words the mechanisms based on activation or kinetic collision of clusters. However, model studies have had difficulties in replicating the small exponents observed in nature. The work done in this thesis indicates that the exponents may be lowered by the participation of a co-condensing (and potentially nucleating) low-volatility organic vapor, or by increasing the assumed size of the critical clusters. On the other hand, the presented new and more accurate method for determining the exponent indicates high diurnal variability. Additionally, these studies included several semi-empirical nucleation rate parameterizations as well as a detailed investigation of the analysis used to determine the apparent particle formation rate. Due to their high proportion of the earth's surface area, oceans could potentially prove to be climatically significant sources of secondary particles. In the lack of marine observation data, new particle formation events in a coastal region were parameterized and studied. Since the formation mechanism is believed to be similar, the new parameterization was applied in a marine scenario. The work showed that marine CCN production is feasible in the presence of additional vapors contributing to particle growth. Finally, a new method to estimate concentrations of condensing organics was developed. The algorithm utilizes a Markov chain Monte Carlo method to determine the required combination of vapor concentrations by comparing a measured particle size distribution with one from an aerosol dynamics process model. The evaluation indicated excellent agreement against model data, and initial results with field data appear sound as well.
Resumo:
Atmospheric aerosol particles have significant climatic effects. Secondary new particle formation is a globally important source of these particles. Currently, the mechanisms of particle formation and the vapours participating in this process are, however, not truly understood. The recently developed Neutral cluster and Air Ion Spectrometer (NAIS) was widely used in field studies of atmospheric particle formation. The NAIS was calibrated and found to be in adequate agreement with the reference instruments. It was concluded that NAIS can be reliably used to measure ions and particles near the sizes where the atmospheric particle formation begins. The main focus of this thesis was to study new particle formation and participation of ions in this process. To attain this objective, particle and ion formation and growth rates were studied in various environments - at several field sites in Europe, in previously rarely studied sites in Antarctica and Siberia and also in an indoor environment. New particle formation was observed at all sites were studied and the observations were used as indicatives of the particle formation mechanisms. Particle size-dependent growth rates and nucleation mode hygroscopic growth factors were examined to obtain information on the particle growth. It was found that the atmospheric ions participate in the initial steps of new particle formation, although their contribution was minor in the boundary layer. The highest atmospheric particle formation rates were observed at the most polluted sites where the role of ions was the least pronounced. Furthermore, the increase of particle growth rate with size suggested that enhancement of the growth by ions was negligible. Participation of organic vapours in the particle growth was supported by laboratory and field observations. It was addressed that secondary new particle formation can also be a significant source of indoor air particles. These results, extending over a wide variety of environments, give support to previous observations and increase understanding on new particle formation on a global scale.