5 resultados para PCD

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropospheric ozone (O3) is one of the most common air pollutants in industrialized countries, and an increasing problem in rapidly industrialising and developing countries in Asia, Africa and South America. Elevated concentrations of tropospheric O3 can lead to decrease in photosynthesis rate and therefore affect the normal metabolism, growth and seed production. Acute and high O3 episodes can lead to extensive damage leading to dead tissue in plants. Thus, O3 derived growth defects can lead to reduction in crop yield thereby leading to economical losses. Despite the extensive research on this area, many questions remain open on how these processes are controlled. In this study, the stress-induced signaling routes and the components involved were elucidated in more detail starting from visual damage to changes in gene expression, signaling routes and plant hormone interactions that are involved in O3-induced cell death. In order to elucidate O3-induced responses in Arabidopsis, mitogen-activated protein kinase (MAPK) signaling was studied using different hormonal signaling mutants. MAPKs were activated at the beginning of the O3 exposure. The activity of MAPKs, which were identified as AtMPK3 and AtMPK6, reached the maximum at 1 and 2 hours after the start of the exposure, respectively. The activity decreased back to clean air levels at 8 hours after the start of the exposure. Both AtMPK3 and AtMPK6 were translocated to nucleus at the beginning of the O3 exposure where they most likely affect gene expression. Differences were seen between different hormonal signaling mutants. Functional SA signaling was shown to be needed for the full protein levels and activation of AtMPK3. In addition, AtMPK3 and AtMPK6 activation was not dependent on ethylene signaling. Finally, jasmonic acid was also shown to have an impact on AtMPK3 protein levels and AtMPK3 activity. To further study O3-induced cell death, an earlier isolated O3 sensitive Arabidopsis mutant rcd1 was mapped, cloned and further characterized. RCD1 was shown to encode a gene with WWE and ADP-ribosylation domains known to be involved in protein-protein interactions and cell signaling. rcd1 was shown to be involved in many processes including hormonal signaling and regulation of stress-responsive genes. rcd1 is sensitive against O3 and apoplastic superoxide, but tolerant against paraquat that produces superoxide in chloroplast. rcd1 is also partially insensitive to glucose and has alterations in hormone responses. These alterations are seen as ABA insensitivity, reduced jasmonic acid sensitivity and reduced ethylene sensitivity. All these features suggest that RCD1 acts as an integrative node in hormonal signaling and it is involved in the hormonal regulation of several specific stress-responsive genes. Further studies with the rcd1 mutant showed that it exhibits the classical features of programmed cell death, PCD, in response to O3. These include nuclear shrinkage, chromatin condensation, nuclear DNA degradation, cytosol vesiculation and accumulation of phenolic compounds and eventually patches of HR-like lesions. rcd1 was found to produce extensive amount of salicylic acid and jasmonic acid in response to O3. Double mutant studies showed that SA independent and dependent processes were involved in the O3-induced PCD in rcd1 and that increased sensitivity against JA led to increased sensitivity against O3. Furthermore, rcd1 had alterations in MAPK signature that resembled changes that were previously seen in mutants defective in SA and JA signaling. Nitric oxide accumulation and its impact on O3-induced cell death were also studied. Transient accumulation of NO was seen at the beginning of the O3 exposure, and during late time points, NO accumulation coincided with the HR-like lesions. NO was shown to modify defense gene expression, such as, SA and ethylene biosynthetic genes. Furthermore, rcd1 was shown to produce more NO in control conditions. In conclusion, NO was shown to be involved in O3-induced signaling leading to attenuation of SA biosynthesis and other defense related genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Programed cell death (PCD) is a fundamental biological process that is as essential for the development and tissue homeostasis as cell proliferation, differentiation and adaptation. The main mode of PCD - apoptosis - occurs via specifi c pathways, such as mitochondrial or death receptor pathway. In the developing nervous system, programed death broadly occurs, mainly triggered by the defi ciency of different survival-promoting neurotrophic factors, but the respective death pathways are poorly studied. In one of the best-characterized models, sympathetic neurons deprived of nerve growth factor (NGF) die via the classical mitochondrial apoptotic pathway. The main aim of this study was to describe the death programs activated in these and other neuronal populations by using neuronal cultures deprived of other neurotrophic factors. First, this study showed that the cultured sympathetic neurons deprived of glial cell line-derived neurotrophic factor (GDNF) die via a novel non-classical death pathway, in which mitochondria and death receptors are not involved. Indeed, cytochrome c was not released into the cytosol, Bax, caspase-9, and caspase-3 were not involved, and Bcl-xL overexpression did not prevent the death. This pathway involved activation of mixed lineage kinases and c-jun, and crucially requires caspase-2 and -7. Second, it was shown that deprivation of neurotrophin-3 (NT-3) from cultured sensory neurons of the dorsal root ganglia kills them via a dependence receptor pathway, including cleavage of the NT- 3 receptor TrkC and liberation of a pro-apoptotic dependence domain. Indeed, death of NT-3-deprived neurons was blocked by a dominant-negative construct interfering with TrkC cleavage. Also, the uncleavable mutant of TrkC, replacing the siRNA-silenced endogeneous TrkC, was not able to trigger death upon NT-3 removal. Such a pathway was not activated in another subpopulation of sensory neurons deprived of NGF. Third, it was shown that cultured midbrain dopaminergic neurons deprived of GDNF or brainderived neurotrophic factor (BDNF) kills them by still a different pathway, in which death receptors and caspases, but not mitochondria, are activated. Indeed, cytochrome c was not released into the cytosol, Bax was not activated, and Bcl-xL did not block the death, but caspases were necessary for the death of these neurons. Blocking the components of the death receptor pathway - caspase-8, FADD, or Fas - blocked the death, whereas activation of Fas accelerated it. The activity of Fas in the dopaminergic neurons could be controlled by the apoptosis inhibitory molecule FAIML. For these studies we developed a novel assay to study apoptosis in the transfected dopaminergic neurons. Thus, a novel death pathway, characteristic for the dopaminergic neurons was described. The study suggests death receptors as possible targets for the treatment of Parkinson s disease, which is caused by the degeneration of dopaminergic neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

International mergers and acquisitions (M&As) often invoke national identification and national cultural differences. We argue that metonymy is a central linguistic resource through which national cultural identities and differences are reproduced in media accounts of international M&As. In this paper, we focus on two revealing cases: the acquisition of American IBM Personal Computer Division (PCD) by the Chinese company Lenovo and the acquisition of American Anheuser-Busch (A-B) by the Belgian-Brazilian company InBev. First, we identify the forms, functions and frequencies of national metonymy in media accounts of these cases. We present a typology that classifies varieties of national metonymy in international M&As. Second, we demonstrate how these metonyms combine with metaphor to generate evocative imagery, engaging wit, and subversive irony. Our findings show that national metonymy contributes to the construction of emotive frames, stereotypes, ideological differences, and threats. Combinations of national metonymy with metaphor also provide powerful means to construct cultural differences. However, combinations of metonymy with wit and irony enable the play on meanings that overturns and resists national and cultural stereotypes. This is the first study to unpack the deployment of metonymy in accounts of international M&As. In doing so, it also opens up new avenues for research into international management and the analysis of tropes in management and organization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson´s disease (PD) is a debilitating age-related neurological disorder that affects various motor skills and can lead to a loss of cognitive functions. The motor symptoms are the result of the progressive degeneration of dopaminergic neurons within the substantia nigra. The factors that influence the pathogenesis and the progression of the neurodegeneration remain mostly unclear. This study investigated the role of various programmed cell death (PCD) pathways, oxidative stress, and glial cells both in dopaminergic neurodegeneration and in the protective action of various drugs. To this end, we exposed dopaminergic neuroblastoma cells (SH-SY5Y cells) to 6-OHDA, which produces oxidative stress and activates various PCD modalities that result in neuronal degeneration. Additionally, to explore the role of glia, we prepared rat midbrain primary mixed-cell cultures containing both neurons and glial cell types such as microglia and astroglia and then exposed the cultures to either MPP plus or lipopolysaccharide. Our results revealed that 6-OHDA activated several PCD pathways including apoptosis, autophagic stress, lysosomal membrane permeabilization, and perhaps paraptosis in SH-SY5Y cells. Furthermore, we found that minocycline protected SH-SY5Y cells from 6-OHDA by inhibiting both apoptotic and non-apoptotic PCD modalities. We also observed an inconsistent neuroprotective effect of various dietary anti-oxidant compounds against 6-OHDA toxicity in vitro in SH-SY5Y cells. Specifically, quercetin and curcumin exerted neuroprotection only within a narrow concentration range and a limited time frame, whereas resveratrol and epigallocatechin 3-gallate provided no protection whatsoever. Lastly, we found that molecules such as amantadine may delay or even halt the neurodegeneration in primary cell cultures by inhibiting the release of neurotoxic factors from overactivated microglia and by enhancing the pro-survival actions of astroglia. Together these data suggest that the strategy of dampening oxidative species with anti-oxidants is less effective than preventing the production of toxic factors such as oxidative and pro-inflammatory molecules by pathologically activated microglia. This would subsequently prevent the activation of various PCD modalities that cause neuronal degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The European Union has agreed on implementing the Policy Coherence for Development (PCD) principle in all policy sectors that are likely to have a direct impact on developing countries. This is in order to take account of and support the EU development cooperation objectives and the achievement of the internationally agreed Millennium Development Goals. The common EU migration policy and the newly introduced EU Blue Card directive present an example of the implementation of the principle in practice: the directive is not only designed to respond to the occurring EU labour demand by attracting highly skilled third-country professionals, but is also intended to contribute to the development objectives of the migrant-sending developing countries, primarily through the tool of circular migration and the consequent skills transfers. My objective in this study is to assess such twofold role of the EU Blue Card and to explore the idea that migration could be harnessed for the benefit of development in conformity with the notion that the two form a positive nexus. Seeing that the EU Blue Card fails to differentiate the most vulnerable countries and sectors from those that are in a better position to take advantage of the global migration flows, the developmental consequences of the directive must be accounted for even in the most severe settings. Accordingly, my intention is to question whether circular migration, as claimed, could address the problem of brain drain in the Malawian health sector, which has witnessed an excessive outflow of its professionals to the UK during the past decade. In order to assess the applicability, likelihood and relevance of circular migration and consequent skills transfers for development in the Malawian context, a field study of a total of 23 interviews with local health professionals was carried out in autumn 2010. The selected approach not only allows me to introduce a developing country perspective to the on-going discussion at the EU level, but also enables me to assess the development dimension of the EU Blue Card and the intended PCD principle through a local lens. Thus these interviews and local viewpoints are at the very heart of this study. Based on my findings from the field, the propensity of the EU Blue Card to result in circular migration and to address the persisting South-North migratory flows as well as the relevance of skills transfers can be called to question. This is as due to the bias in its twofold role the directive overlooks the importance of the sending country circumstances, which are known to determine any developmental outcomes of migration, and assumes that circular migration alone could bring about immediate benefits. Without initial emphasis on local conditions, however, positive outcomes for vulnerable countries such as Malawi are ever more distant. Indeed it seems as if the EU internal interests in migration policy forbid the fulfilment of the PCD principle and diminish the attempt to harness migration for development to bare rhetoric.