3 resultados para Orion DBMS, Database, Uncertainty, Uncertain values, Benchmark
em Helda - Digital Repository of University of Helsinki
Resumo:
The forest simulator is a computerized model for predicting forest growth and future development as well as effects of forest harvests and treatments. The forest planning system is a decision support tool, usually including a forest simulator and an optimisation model, for finding the optimal forest management actions. The information produced by forest simulators and forest planning systems is used for various analytical purposes and in support of decision making. However, the quality and reliability of this information can often be questioned. Natural variation in forest growth and estimation errors in forest inventory, among other things, cause uncertainty in predictions of forest growth and development. This uncertainty stemming from different sources has various undesirable effects. In many cases outcomes of decisions based on uncertain information are something else than desired. The objective of this thesis was to study various sources of uncertainty and their effects in forest simulators and forest planning systems. The study focused on three notable sources of uncertainty: errors in forest growth predictions, errors in forest inventory data, and stochastic fluctuation of timber assortment prices. Effects of uncertainty were studied using two types of forest growth models, individual tree-level models and stand-level models, and with various error simulation methods. New method for simulating more realistic forest inventory errors was introduced and tested. Also, three notable sources of uncertainty were combined and their joint effects on stand-level net present value estimates were simulated. According to the results, the various sources of uncertainty can have distinct effects in different forest growth simulators. The new forest inventory error simulation method proved to produce more realistic errors. The analysis on the joint effects of various sources of uncertainty provided interesting knowledge about uncertainty in forest simulators.
Resumo:
This is an ethnographic study, in the field of medical anthropology, of village life among farmers in southwest Finland. It is based on 12 months of field work conducted 2002-2003 in a coastal village. The study discusses how social and cultural change affects the life of farmers, how they experience it and how they act in order to deal with the it. Using social suffering as a methodological approach the study seeks to investigate how change is related to lived experiences, idioms of distress, and narratives. Its aim has been to draw a locally specific picture of what matters are at stake in the local moral world that these farmers inhabit, and how they emerge as creative actors within it. A central assumption made about change is that it is two-fold; both a constructive force which gives birth to something new, and also a process that brings about uncertainty regarding the future. Uncertainty is understood as an existential condition of human life that demands a response, both causing suffering and transforming it. The possibility for positive outcomes in the future enables one to understand this small suffering of everyday life both as a consequence of social change, which fragments and destroys, and as an answer to it - as something that is positively meaningful. Suffering is seen to engage individuals to ensure continuity, in spite of the odds, and to sustain hope regarding the future. When the fieldwork was initiated Finland had been a member of the European Union for seven years and farmers felt it had substantially impacted on their working conditions. They complained about the restrictions placed on their autonomy and that their knowledge was neither recognised, nor respected by the bureaucrats of the EU system. New regulations require them to work in a manner that is morally unacceptable to them and financial insecurity has become more prominent. All these changes indicate the potential loss of the home and of the ability to ensure continuity of the family farm. Although the study initially focused on getting a general picture of working conditions and the nature of farming life, during the course of the fieldwork there was repeated mention of a perceived high prevalence of cancer in the area. This cancer talk is replete with metaphors that reveal cultural meanings tied to the farming life and the core values of autonomy, endurance and permanence. It also forms the basis of a shared identity and a means of delivering a moral message about the fragmentation of the good life; the loss of control; and the invasion of the foreign. This thesis formed part of the research project Expressions of Suffering. Ethnographies of Illness Experiences in Contemporary Finnish Contexts funded by the Academy of Finland. It opens up a vital perspective on the multiplicity and variety of the experience of suffering and that it is particularly through the use of the ethnographic method that these experiences can be brought to light. Keywords: suffering, uncertainty, phenomenology, habitus, agency, cancer, farming
Resumo:
In recent years, thanks to developments in information technology, large-dimensional datasets have been increasingly available. Researchers now have access to thousands of economic series and the information contained in them can be used to create accurate forecasts and to test economic theories. To exploit this large amount of information, researchers and policymakers need an appropriate econometric model.Usual time series models, vector autoregression for example, cannot incorporate more than a few variables. There are two ways to solve this problem: use variable selection procedures or gather the information contained in the series to create an index model. This thesis focuses on one of the most widespread index model, the dynamic factor model (the theory behind this model, based on previous literature, is the core of the first part of this study), and its use in forecasting Finnish macroeconomic indicators (which is the focus of the second part of the thesis). In particular, I forecast economic activity indicators (e.g. GDP) and price indicators (e.g. consumer price index), from 3 large Finnish datasets. The first dataset contains a large series of aggregated data obtained from the Statistics Finland database. The second dataset is composed by economic indicators from Bank of Finland. The last dataset is formed by disaggregated data from Statistic Finland, which I call micro dataset. The forecasts are computed following a two steps procedure: in the first step I estimate a set of common factors from the original dataset. The second step consists in formulating forecasting equations including the factors extracted previously. The predictions are evaluated using relative mean squared forecast error, where the benchmark model is a univariate autoregressive model. The results are dataset-dependent. The forecasts based on factor models are very accurate for the first dataset (the Statistics Finland one), while they are considerably worse for the Bank of Finland dataset. The forecasts derived from the micro dataset are still good, but less accurate than the ones obtained in the first case. This work leads to multiple research developments. The results here obtained can be replicated for longer datasets. The non-aggregated data can be represented in an even more disaggregated form (firm level). Finally, the use of the micro data, one of the major contributions of this thesis, can be useful in the imputation of missing values and the creation of flash estimates of macroeconomic indicator (nowcasting).