24 resultados para Option Pricing
em Helda - Digital Repository of University of Helsinki
Resumo:
The use of different time units in option pricing may lead to inconsistent estimates of time decay and spurious jumps in implied volatilities. Different time units in the pricing model leads to different implied volatilities although the option price itself is the same.The chosen time unit should make it necessary to adjust the volatility parameter only when there are some fundamental reasons for it and not due to wrong specifications of the model. This paper examined the effects of option pricing using different time hypotheses and empirically investigated which time frame the option markets in Germany employ over weekdays. The paper specifically tries to get a picture of how the market prices options. The results seem to verify that the German market behaves in a fashion that deviates from the most traditional time units in option pricing, calendar and trading days. The study also showed that the implied volatility of Thursdays was somewhat higher and thus differed from the pattern of other days of the week. Using a GARCH model to further investigate the effect showed that although a traditional tests, like the analysis of variance, indicated a negative return for Thursday during the same period as the implied volatilities used, this was not supported using a GARCH model.
Resumo:
This study evaluates three different time units in option pricing: trading time, calendar time and continuous time using discrete approximations (CTDA). The CTDA-time model partitions the trading day into 30-minute intervals, where each interval is given a weight corresponding to the historical volatility in the respective interval. Furthermore, the non-trading volatility, both overnight and weekend volatility, is included in the first interval of the trading day in the CTDA model. The three models are tested on market prices. The results indicate that the trading-time model gives the best fit to market prices in line with the results of previous studies, but contrary to expectations under non-arbitrage option pricing. Under non-arbitrage pricing, the option premium should reflect the cost of hedging the expected volatility during the option’s remaining life. The study concludes that the historical patterns in volatility are not fully accounted for by the market, rather the market prices options closer to trading time.
Resumo:
This study examines the intraday and weekend volatility on the German DAX. The intraday volatility is partitioned into smaller intervals and compared to a whole day’s volatility. The estimated intraday variance is U-shaped and the weekend variance is estimated to 19 % of a normal trading day. The patterns in the intraday and weekend volatility are used to develop an extension to the Black and Scholes formula to form a new time basis. Calendar or trading days are commonly used for measuring time in option pricing. The Continuous Time using Discrete Approximations model (CTDA) developed in this study uses a measure of time with smaller intervals, approaching continuous time. The model presented accounts for the lapse of time during trading only. Arbitrage pricing suggests that the option price equals the expected cost of hedging volatility during the option’s remaining life. In this model, time is allowed to lapse as volatility occurs on an intraday basis. The measure of time is modified in CTDA to correct for the non-constant volatility and to account for the patterns in volatility.
Resumo:
This study examined the effects of the Greeks of the options and the trading results of delta hedging strategies, with three different time units or option-pricing models. These time units were calendar time, trading time and continuous time using discrete approximation (CTDA) time. The CTDA time model is a pricing model, that among others accounts for intraday and weekend, patterns in volatility. For the CTDA time model some additional theta measures, which were believed to be usable in trading, were developed. The study appears to verify that there were differences in the Greeks with different time units. It also revealed that these differences influence the delta hedging of options or portfolios. Although it is difficult to say anything about which is the most usable of the different time models, as this much depends on the traders view of the passing of time, different market conditions and different portfolios, the CTDA time model can be viewed as an attractive alternative.
Resumo:
Pricing American put options on dividend-paying stocks has largely been ignored in the option pricing literature because the problem is mathematically complex and valuation usually resorts to computationally expensive and impractical pricing applications. This paper computed a simulation study, using two different approximation methods for the valuation of American put options on a stock with known discrete dividend payments. This to find out if there were pricing errors and to find out which could be the most usable method for practical users. The option pricing models used in the study was the dividend approximation by Blomeyer (1986) and the one by Barone-Adesi and Whaley (1988). The study showed that the approximation method by Blomeyer worked satisfactory for most situations, but some errors occur for longer times to the dividend payment, for smaller dividends and for in-the-money options. The approximation method by Barone-Adesi and Whaley worked well for in-the-money options and at-the-money options, but had serious pricing errors for out-of-the-money options. The conclusion of the study is that a combination of the both methods might be preferable to any single model.
Resumo:
Frictions are factors that hinder trading of securities in financial markets. Typical frictions include limited market depth, transaction costs, lack of infinite divisibility of securities, and taxes. Conventional models used in mathematical finance often gloss over these issues, which affect almost all financial markets, by arguing that the impact of frictions is negligible and, consequently, the frictionless models are valid approximations. This dissertation consists of three research papers, which are related to the study of the validity of such approximations in two distinct modeling problems. Models of price dynamics that are based on diffusion processes, i.e., continuous strong Markov processes, are widely used in the frictionless scenario. The first paper establishes that diffusion models can indeed be understood as approximations of price dynamics in markets with frictions. This is achieved by introducing an agent-based model of a financial market where finitely many agents trade a financial security, the price of which evolves according to price impacts generated by trades. It is shown that, if the number of agents is large, then under certain assumptions the price process of security, which is a pure-jump process, can be approximated by a one-dimensional diffusion process. In a slightly extended model, in which agents may exhibit herd behavior, the approximating diffusion model turns out to be a stochastic volatility model. Finally, it is shown that when agents' tendency to herd is strong, logarithmic returns in the approximating stochastic volatility model are heavy-tailed. The remaining papers are related to no-arbitrage criteria and superhedging in continuous-time option pricing models under small-transaction-cost asymptotics. Guasoni, Rásonyi, and Schachermayer have recently shown that, in such a setting, any financial security admits no arbitrage opportunities and there exist no feasible superhedging strategies for European call and put options written on it, as long as its price process is continuous and has the so-called conditional full support (CFS) property. Motivated by this result, CFS is established for certain stochastic integrals and a subclass of Brownian semistationary processes in the two papers. As a consequence, a wide range of possibly non-Markovian local and stochastic volatility models have the CFS property.
Resumo:
In this paper, we examine the predictability of observed volatility smiles in three major European index options markets, utilising the historical return distributions of the respective underlying assets. The analysis involves an application of the Black (1976) pricing model adjusted in accordance with the Jarrow-Rudd methodology as proposed in 1982. Thereby we adjust the expected future returns for the third and fourth central moments as these represent deviations from normality in the distributions of observed returns. Thus, they are considered one possible explanation to the existence of the smile. The obtained results indicate that the inclusion of the higher moments in the pricing model to some extent reduces the volatility smile, compared with the unadjusted Black-76 model. However, as the smile is partly a function of supply, demand, and liquidity, and as such intricate to model, this modification does not appear sufficient to fully capture the characteristics of the smile.
Resumo:
Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.
Resumo:
Managerial pay-for-performance sensitivity has increased rapidly around the world. Early empirical research showed that pay-for-performance sensitivity resulting from stock ownership and stock options appeared to be quite low during the 1970s and early 1980s in the U.S. However, recent empirical research from the U.S. shows an enormous increase in pay-for-performance sensitivity. The global trend has also reached Finland, where stock options have become a major ingredient of executive compensation. The fact that stock options seem to be an appealing form of remuneration from a theoretical point of view combined with the observation that the use of this compensation form has increased significantly during the recent years, implies that research on the dynamics of stock option compensation is highly relevant for the academic community, as well as for practitioners and regulators. The research questions of the thesis are analyzed in four separate essays. The first essay examines whether stock option compensation practices of Finnish firms are consistent with predictions from principal-agent theory. The second essay explores one of the major puzzles in the compensation literature by studying determinants of stock option contract design. In theory, optimal contract design should vary according to firm characteristics. However, in the U.S., variation in contract design seems to be surprisingly low, a phenomenon generally attributed to tax and accounting considerations. In Finland, however, firms are not subject to stringent contracting restrictions, and the variation in contract design tends, in fact, to be quite substantial. The third essay studies the impact of price- and risk incentives arising from stock option compensation on firm investment. In addition, the essay explores one of the most debated questions in the literature, in particular, the relation between incentives and firm performance. Finally, several strands of literature in both economics and corporate finance hypothesize that economic uncertainty is related to corporate decision-making. Previous research has shown that risk tends to slow down firm investment. In the fourth essay, it is hypothesized that firm risk slows down growth from a more universal perspective. Consistent with this view, it is shown that risk not only tends to slow down firm investment, but also employment growth. Moreover, the essay explores whether the nature of firms’ compensation policies, in particular, whether firms make use of stock option compensation, affects the relation between risk and firm growth. In summary, the four essays contribute to the current understanding of stock options as a form of equity incentives, and how incentives and risk affect corporate decision-making. By this, the thesis promotes the knowledge related to the modern theory of the firm.
Resumo:
A better understanding of stock price changes is important in guiding many economic activities. Since prices often do not change without good reasons, searching for related explanatory variables has involved many enthusiasts. This book seeks answers from prices per se by relating price changes to their conditional moments. This is based on the belief that prices are the products of a complex psychological and economic process and their conditional moments derive ultimately from these psychological and economic shocks. Utilizing information about conditional moments hence makes it an attractive alternative to using other selective financial variables in explaining price changes. The first paper examines the relation between the conditional mean and the conditional variance using information about moments in three types of conditional distributions; it finds that the significance of the estimated mean and variance ratio can be affected by the assumed distributions and the time variations in skewness. The second paper decomposes the conditional industry volatility into a concurrent market component and an industry specific component; it finds that market volatility is on average responsible for a rather small share of total industry volatility — 6 to 9 percent in UK and 2 to 3 percent in Germany. The third paper looks at the heteroskedasticity in stock returns through an ARCH process supplemented with a set of conditioning information variables; it finds that the heteroskedasticity in stock returns allows for several forms of heteroskedasticity that include deterministic changes in variances due to seasonal factors, random adjustments in variances due to market and macro factors, and ARCH processes with past information. The fourth paper examines the role of higher moments — especially skewness and kurtosis — in determining the expected returns; it finds that total skewness and total kurtosis are more relevant non-beta risk measures and that they are costly to be diversified due either to the possible eliminations of their desirable parts or to the unsustainability of diversification strategies based on them.
Resumo:
Financial time series tend to behave in a manner that is not directly drawn from a normal distribution. Asymmetries and nonlinearities are usually seen and these characteristics need to be taken into account. To make forecasts and predictions of future return and risk is rather complicated. The existing models for predicting risk are of help to a certain degree, but the complexity in financial time series data makes it difficult. The introduction of nonlinearities and asymmetries for the purpose of better models and forecasts regarding both mean and variance is supported by the essays in this dissertation. Linear and nonlinear models are consequently introduced in this dissertation. The advantages of nonlinear models are that they can take into account asymmetries. Asymmetric patterns usually mean that large negative returns appear more often than positive returns of the same magnitude. This goes hand in hand with the fact that negative returns are associated with higher risk than in the case where positive returns of the same magnitude are observed. The reason why these models are of high importance lies in the ability to make the best possible estimations and predictions of future returns and for predicting risk.
Resumo:
This study contributes to our knowledge of how information contained in financial statements is interpreted and priced by the stock market in two aspects. First, the empirical findings indicate that investors interpret some of the information contained in new financial statements in the context of the information of prior financial statements. Second, two central hypotheses offered in earlier literature to explain the significant connection between publicly available financial statement information and future abnormal returns, that the signals proxy for risk and that the information is priced with a delay, are evaluated utilizing a new methodology. It is found that the mentioned significant connection for some financial statement signals can be explained by that the signals proxy for risk and for other financial statement signals by that the information contained in the signals is priced with a delay.
Resumo:
This study contributes to the executive stock option literature by looking at factors driving the introduction of such a compensation form on a firm level. Using a discrete decision model I test the explanatory power of several agency theory based variables and find strong support for predictability of the form of executive compensation. Ownership concentration and liquidity are found to have a significant negative effect on the probability of stock option adoption. Furtermore, I find evidence of CEO ownership, institutional ownership, investment intensity, and historical market return having a significant and a positive relationship to the likelihood of adopting a executive stock option program.
Resumo:
The objective of this paper is to suggest a method that accounts for the impact of the volatility smile dynamics when performing scenario analysis for a portfolio consisting of vanilla options. As the volatility smile is documented to change at least with the level of implied at-the-money volatility, a suitable model is here included in the calculation process of the simulated market scenarios. By constructing simple portfolios of index options and comparing the ex ante risk exposure measured using different pricing methods to realized market values, ex post, the improvements of the incorporation of the model are monitored. The analyzed examples in the study generate results that statistically support that the most accurate scenarios are those calculated using the model accounting for the dynamics of the smile. Thus, we show that the differences emanating from the volatility smile are apparent and should be accounted for and that the methodology presented herein is one suitable alternative for doing so.
Resumo:
The objective of this paper is to investigate the pricing accuracy under stochastic volatility where the volatility follows a square root process. The theoretical prices are compared with market price data (the German DAX index options market) by using two different techniques of parameter estimation, the method of moments and implicit estimation by inversion. Standard Black & Scholes pricing is used as a benchmark. The results indicate that the stochastic volatility model with parameters estimated by inversion using the available prices on the preceding day, is the most accurate pricing method of the three in this study and can be considered satisfactory. However, as the same model with parameters estimated using a rolling window (the method of moments) proved to be inferior to the benchmark, the importance of stable and correct estimation of the parameters is evident.