22 resultados para Optical film
em Helda - Digital Repository of University of Helsinki
Resumo:
Mannans are abundant plant polysaccharides found in the endosperm of certain leguminous seeds (guar gum galactomannan, GG; locust bean gum galactomannan, LBG), in the tuber of the konjac plant (konjac glucomannan, KGM), and in softwoods (galactoglucomannan, GGM). This study focused on the effects of the chemical structure of mannans on their film-forming and emulsion-stabilizing properties. Special focus was on spruce GGM, which is an interesting new product from forest biorefineries. A plasticizer was needed for the formation of films from mannans other than KGM and the optimal proportion was 40% (w/w of polymers) glycerol or sorbitol. Galactomannans with lower galactose content (LBG, modified GG) produced films with higher elongation at break and tensile strength. The mechanical properties of GG-based films were improved by decreasing the degree of polymerization of the polysaccharide with moderate mannanase treatments. The improvement of mechanical properties of GGM-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and KGM. Adding other polymers increased the elongation at break of GGM blend films. The tensile strength of films increased with increasing amounts of PVOH and KGM, but the effect of cAX was the opposite. Dynamic mechanical analysis showed two separate loss modulus peaks for blends of GGM and PVOH, but a single peak for all other films. Optical and scanning electron microscopy confirmed good miscibility of GGM with cAX and KGM. In contrast, films blended from GGM and PVOH showed phase separation. GGM and KGM were mixed with cellulose nanowhiskers (CNW) to form composite films. Addition of CNW to KGM-based films induced the formation of fiberlike structures with lengths of several millimeters. In GGM-based films, rodlike structures with lengths of tens of micrometers were formed. Interestingly, the notable differences in the film structure did not appear to be related to the mechanical and thermal properties of the films. Permeability properties of GGM-based films were compared to those of films from commercial mannans KGM, GG, and LBG. GGM-based films had the lowest water vapor permeability when compared to films from other mannans. The oxygen permeability of GGM films was of the same magnitude as that of commercial polyethylene / ethylene vinyl alcohol / polyethylene laminate film. The aroma permeability of GGM films was low. All films were transparent in the visible region, but GGM films blocked the light transmission in the ultraviolet region of the spectra. The stabilizing effect of GGM on a model beverage emulsion system was studied and compared to that of GG, LBG, KGM, and cAX. In addition, GG was enzymatically modified in order to examine the effect of the degree of polymerization and the degree of substitution of galactomannans on emulsion stability. Use of GGM increased the turbidity of emulsions both immediately after preparation and after storage of up to 14 days at room temperature. GGM emulsions had higher turbidity than the emulsions containing other mannans. Increasing the storage temperature to +45 ºC led to rapid emulsion breakdown, but a decrease in storage temperature increased emulsion stability after 14 days. A low degree of polymerization and a high degree of substitution of the modified galactomannans were associated with a decrease in emulsion turbidity.
Resumo:
Due to the recent development in CCD technology aerial photography is now slowly changing from film to digital cameras. This new aspect in remote sensing allows and requires also new automated analysis methods. Basic research on reflectance properties of natural targets is needed so that computerized processes could be fully utilized. For this reason an instrument was developed at Finnish Geodetic Institute for measurement of multiangular reflectance of small remote sensing targets e.g. forest understorey or asphalt. Finnish Geodetic Institute Field Goniospectrometer (FiGIFiGo) is a portable device that is operated by 1 or 2 persons. It can be reassembled to a new location in 15 minutes and after that a target's multiangular reflectance can be measured in 10 - 30 minutes (with one illumination angle). FiGIFiGo has effective spectral range approximately from 400 nm to 2000 nm. The measurements can be made either outside with sunlight or in laboratory with 1000 W QTH light source. In this thesis FiGIFiGo is introduced and the theoretical basis of such reflectance measurements are discussed. A new method is introduced for extraction of subcomponent proportions from reflectance of a mixture sample, e.g. for retrieving proportion of lingonberry's reflectance in observation of lingonberry-lichen sample. This method was tested by conducting a series of measurements on reflectance properties of artificial samples. The component separation method yielded sound results and brought up interesting aspects in targets' reflectances. The method and the results still need to be verified with further studies, but the preliminary results imply that this method could be a valuable tool in analysis of such mixture samples.
Resumo:
Thin films of various metal fluorides are suited for optical coatings from infrared (IR) to ultraviolet (UV) range due to their excellent light transmission. In this work, novel metal fluoride processes have been developed for atomic layer deposition (ALD), which is a gas phase thin film deposition method based on alternate saturative surface reactions. Surface controlled self-limiting film growth results in conformal and uniform films. Other strengths of ALD are precise film thickness control, repeatability and dense and pinhole free films. All these make the ALD technique an ideal choice also for depositing metal fluoride thin films. Metal fluoride ALD processes have been largely missing, which is mostly due to a lack of a good fluorine precursor. In this thesis, TiF4 precursor was used for the first time as the fluorine source in ALD for depositing CaF2, MgF2, LaF3 and YF3 thin films. TaF5 was studied as an alternative novel fluorine precursor only for MgF2 thin films. Metal-thd (thd = 2,2,6,6-tetramethyl-3,5-heptanedionato) compounds were applied as the metal precursors. The films were grown at 175 450 °C and they were characterized by various methods. The metal fluoride films grown at higher temperatures had generally lower impurity contents with higher UV light transmittances, but increased roughness caused more scattering losses. The highest transmittances and low refractive indices below 1.4 (at 580 nm) were obtained with MgF2 samples. MgF2 grown from TaF5 precursor showed even better UV light transmittance than MgF2 grown from TiF4. Thus, TaF5 can be considered as a high quality fluorine precursor for depositing metal fluoride thin films. Finally, MgF2 films were applied in fabrication of high reflecting mirrors together with Ta2O5 films for visible region and with LaF3 films for UV region. Another part of the thesis consists of applying already existing ALD processes for novel optical devices. In addition to the high reflecting mirrors, a thin ALD Al2O3 film on top of a silver coating was proven to protect the silver mirror coating from tarnishing. Iridium grid filter prototype for rejecting IR light and Ir-coated micro channel plates for focusing x-rays were successfully fabricated. Finally, Ir-coated Fresnel zone plates were shown to provide the best spatial resolution up to date in scanning x-ray microscopy.
Resumo:
Tässä tutkielmassa tarkastellaan, miten Berliinin suurkaupunki vaikutti Weimarin tasavallan loppuaikoina yksilöön. Tutkimusaineistona on Alfred Döblinin romaani Berlin Alexanderplatz sekä Walter Ruttmannin elokuva Berlin. Die Sinfonie der Großstadt ja kuunnelma Weekend. Teoreettisena taustana hyödynnetään kulttuuri- ja mediahistorian mentaliteetti- ja sosiaalihistoriaa. Aihetta käsitellään myös historiallis-temaattisesta lähtökohdasta, eli työssä tutkitaan todellisen Berliinin asemaa kyseisenä aikana, modernin metropolin olemusta, modernin ajan murrosvaihetta sekä uusasiallisen taidesuuntauksen vaikutusta teoksiin. Weimarin tasavallan aikana Saksassa elettiin murroksen keskellä. Toisaalta yhteiskunta oli poliittisesti pirstoutunut ja taloudellisesti epävakaa, mutta toisaalta kulttuurielämä oli lyhyen aikaa rikasta. Suurkaupungin asukkailla oli enemmän vapaa-aikaa ja mahdollisuuksia toteuttaa itseään omassa ympäristössään. Toisaalta ajan ristiriitaisuus kuitenkin vaikeutti yksilöllisen elämäntavan toteutumista; ihmiset odottivat murroskauden päättymiseltä materiaalista tyydytystä, jolloin henkiselle kehitykselle jäi vähän tilaa. Tärkein kysymyksenasettelu koskee suurkaupungin roolia oman aikansa tuotteena: missä määrin kaupunki oli ihmisen todellinen vastustaja ja missä määrin sen asema oli kuviteltua? Todellisen Berliinin suhdetta reflektoidaan fiktiiviseen suurkaupunkiympäristöön. Ensin tarkastellaan Berliiniä toimijana murroskaudella ja sitten käsitellään ajan ja tilan havainnointia. Koska teokset ovat fiktiivisiä, erityisen tarkastelun kohteena on todellisuuden, fiktion ja simulaation suhde. Tässä yhteydessä tarkastellaan myös kaupungin ja maaseudun välistä problematiikkaa. Kolmannessa osassa esille nousee yksilön ja massan välinen suhde, joka sekin vaikuttaa ihmisen ja suurkaupungin väliseen vastakkainasetteluun. Ilmensikö koneiden ja liikenteen dominoiva asema futuristista asetelmaa? Lisäksi käsitellään alamaailman ja kultaisen 20-luvun välistä kuilua. Kaikkia kolmea teosta yhdistää 24 tunnin aikakäsite; ajalla on selkeästi rajattu alku ja loppu, ja myös tilan käsite on tarkastelussa tärkeä. Kaikissa teoksissa on hyödynnetty montaasitekniikkaa. Kohtaukset vaihtuvat hyvinkin nopeasti, jolloin lukija, katsoja tai kuulija vieraantuu varsinaisesta kohteestaan. Montaasi vaikuttaa ratkaisevasti myös kaupungin ja yksilön suhteen kuvaukseen. Suurkaupungista muotoutuu lähes hirviömäinen, personifioitu subjekti, joka konemaisella olemuksellaan pyrkii nujertamaan pienen ihmisen. Döblinin romaanissa kertoja toimii ikään kuin yksilöä vastaan liittämällä kerronnan väliin uutisaiheita, säätiedotuksia ja kohtalokertomuksia. Elokuvassa ja kuunnelmassa teknologisen kehityksen ihannointi on noussut etualalle: ihmiset muistuttavat sekä yksilöinä että massana koneita, jotka liikkuvat hektisen mekaanisesti eteenpäin kuin liikennevälineet. He eivät kyseenalaista ympäristöään eivätkä koe olevansa oravanpyörässä. Romaanin päähenkilö on heijastanut omat pelkonsa konkreettisesti suurkaupungin infrastruktuuriin, kerrostaloihin, jotka tuntuvat kaatuvan hänen päälleen. Yksilöllinen kehitys on vaarassa pysähtyä, sillä koneistuminen tekee yksilöistä massaa. Elokuvassa ja kuunnelmassa kamppailu suurkaupunkiorganismin ja ihmisten välillä jatkuu, mutta romaanissa kamppailu päättyy päähenkilön parantumiseen. Hänestä tulee mallikansalainen - vaiennettu ja kuuliainen. Kaikkien kolmen teoksen hahmoja kuvataan modernin ajan uhreina. Heiltä puuttuu mekanismi, jolla he voisivat käsitellä kokonaisuuksia. Modernin ajan hahmojen elämä on lopulta kuin tanssia tulivuoren päällä - epävarmaa ja riskialtista.
Resumo:
This thesis integrates real-time feedback control into an optical tweezers instrument. The goal is to reduce the variance in the trapped bead s position, -effectively increasing the trap stiffness of the optical tweezers. Trap steering is done with acousto-optic deflectors and control algorithms are implemented with a field-programmable gate array card. When position clamp feedback control is on, the effective trap stiffness increases 12.1-times compared to the stiffness without control. This allows improved spatial control over trapped particles without increasing the trapping laser power.
Resumo:
This thesis consists of two parts; in the first part we performed a single-molecule force extension measurement with 10kb long DNA-molecules from phage-λ to validate the calibration and single-molecule capability of our optical tweezers instrument. Fitting the worm-like chain interpolation formula to the data revealed that ca. 71% of the DNA tethers featured a contour length within ±15% of the expected value (3.38 µm). Only 25% of the found DNA had a persistence length between 30 and 60 nm. The correct value should be within 40 to 60 nm. In the second part we designed and built a precise temperature controller to remove thermal fluctuations that cause drifting of the optical trap. The controller uses feed-forward and PID (proportional-integral-derivative) feedback to achieve 1.58 mK precision and 0.3 K absolute accuracy. During a 5 min test run it reduced drifting of the trap from 1.4 nm/min in open-loop to 0.6 nm/min in closed-loop.
Resumo:
The light emitted by flat panel displays (FPD) can be generated in many different ways, such as for example alternating current thin film electroluminescence (ACTFEL), liquid crystal display (LCD), light emitting diode (LED), or plasma display panel (PDP) technologies. In this work, the focus was on ACTFEL devices and the goal was to develop new thin film processes for light emitting materials in ACTFEL devices. The films were deposited with the atomic layer deposition (ALD) method, which has been utilized in the manufacturing of ACTFEL displays since the mid-1980s. The ALD method is based on surface-controlled self-terminated reactions and a maximum of one layer of the desired material can be prepared during one deposition cycle. Therefore, the film thickness can be controlled simply by adjusting the number of deposition cycles. In addition, both large areas and deep trench structures can be covered uniformly. During this work, new ALD processes were developed for the following thin film materials: BaS, CuxS, MnS, PbS, SrS, SrSe, SrTe, SrS1-xSex, ZnS, and ZnS1-xSex. In addition, several ACTFEL devices were prepared where the light emitting material was BaS, SrS, SrS1-xSex, ZnS, or ZnS1-xSex thin film that was doped with Ce, Cu, Eu, Mn, or Pb. The sulfoselenide films were made by substituting the elemental selenium for sulfur on the substrate surface during film deposition. In this way, it was possible to replace a maximum of 90% of the sulfur with selenium, and the XRD analyses indicated that the films were solid solutions. The polycrystalline BaS, SrS, and ZnS thin films were deposited at 180-400, 120-460, and 280-500 °C, respectively, and the processes had a wide temperature range where the growth rate of the films was independent of the deposition temperature. The electroluminescence studies showed that the doped sulfoselenide films resulted in low emission intensity. However, the emission intensities and emission colors of the doped SrS, BaS, and ZnS films were comparable with those found in earlier studies. It was also shown that the electro-optical properties of the different ZnS:Mn devices were different as a consequence of different ZnS:Mn processes. Finally, it was concluded that because the higher deposition temperature seemed to result in a higher emission intensity, the thermal stability of the reactants has a significant role when the light emitting materials of ACTFEL devices are deposited with the ALD method.
Resumo:
A wide range of models used in agriculture, ecology, carbon cycling, climate and other related studies require information on the amount of leaf material present in a given environment to correctly represent radiation, heat, momentum, water, and various gas exchanges with the overlying atmosphere or the underlying soil. Leaf area index (LAI) thus often features as a critical land surface variable in parameterisations of global and regional climate models, e.g., radiation uptake, precipitation interception, energy conversion, gas exchange and momentum, as all areas are substantially determined by the vegetation surface. Optical wavelengths of remote sensing are the common electromagnetic regions used for LAI estimations and generally for vegetation studies. The main purpose of this dissertation was to enhance the determination of LAI using close-range remote sensing (hemispherical photography), airborne remote sensing (high resolution colour and colour infrared imagery), and satellite remote sensing (high resolution SPOT 5 HRG imagery) optical observations. The commonly used light extinction models are applied at all levels of optical observations. For the sake of comparative analysis, LAI was further determined using statistical relationships between spectral vegetation index (SVI) and ground based LAI. The study areas of this dissertation focus on two regions, one located in Taita Hills, South-East Kenya characterised by tropical cloud forest and exotic plantations, and the other in Gatineau Park, Southern Quebec, Canada dominated by temperate hardwood forest. The sampling procedure of sky map of gap fraction and size from hemispherical photographs was proven to be one of the most crucial steps in the accurate determination of LAI. LAI and clumping index estimates were significantly affected by the variation of the size of sky segments for given zenith angle ranges. On sloping ground, gap fraction and size distributions present strong upslope/downslope asymmetry of foliage elements, and thus the correction and the sensitivity analysis for both LAI and clumping index computations were demonstrated. Several SVIs can be used for LAI mapping using empirical regression analysis provided that the sensitivities of SVIs at varying ranges of LAI are large enough. Large scale LAI inversion algorithms were demonstrated and were proven to be a considerably efficient alternative approach for LAI mapping. LAI can be estimated nonparametrically from the information contained solely in the remotely sensed dataset given that the upper-end (saturated SVI) value is accurately determined. However, further study is still required to devise a methodology as well as instrumentation to retrieve on-ground green leaf area index . Subsequently, the large scale LAI inversion algorithms presented in this work can be precisely validated. Finally, based on literature review and this dissertation, potential future research prospects and directions were recommended.
Resumo:
Thin film applications have become increasingly important in our search for multifunctional and economically viable technological solutions of the future. Thin film coatings can be used for a multitude of purposes, ranging from a basic enhancement of aesthetic attributes to the addition of a complex surface functionality. Anything from electronic or optical properties, to an increased catalytic or biological activity, can be added or enhanced by the deposition of a thin film, with a thickness of only a few atomic layers at the best, on an already existing surface. Thin films offer both a means of saving in materials and the possibility for improving properties without a critical enlargement of devices. Nanocluster deposition is a promising new method for the growth of structured thin films. Nanoclusters are small aggregates of atoms or molecules, ranging in sizes from only a few nanometers up to several hundreds of nanometers in diameter. Due to their large surface to volume ratio, and the confinement of atoms and electrons in all three dimensions, nanoclusters exhibit a wide variety of exotic properties that differ notably from those of both single atoms and bulk materials. Nanoclusters are a completely new type of building block for thin film deposition. As preformed entities, clusters provide a new means of tailoring the properties of thin films before their growth, simply by changing the size or composition of the clusters that are to be deposited. Contrary to contemporary methods of thin film growth, which mainly rely on the deposition of single atoms, cluster deposition also allows for a more precise assembly of thin films, as the configuration of single atoms with respect to each other is already predetermined in clusters. Nanocluster deposition offers a possibility for the coating of virtually any material with a nanostructured thin film, and therein the enhancement of already existing physical or chemical properties, or the addition of some exciting new feature. A clearer understanding of cluster-surface interactions, and the growth of thin films by cluster deposition, must, however, be achieved, if clusters are to be successfully used in thin film technologies. Using a combination of experimental techniques and molecular dynamics simulations, both the deposition of nanoclusters, and the growth and modification of cluster-assembled thin films, are studied in this thesis. Emphasis is laid on an understanding of the interaction between metal clusters and surfaces, and therein the behaviour of these clusters during deposition and thin film growth. The behaviour of single metal clusters, as they impact on clean metal surfaces, is analysed in detail, from which it is shown that there exists a cluster size and deposition energy dependent limit, below which epitaxial alignment occurs. If larger clusters are deposited at low energies, or cluster-surface interactions are weaker, non-epitaxial deposition will take place, resulting in the formation of nanocrystalline structures. The effect of cluster size and deposition energy on the morphology of cluster-assembled thin films is also determined, from which it is shown that nanocrystalline cluster-assembled films will be porous. Modification of these thin films, with the purpose of enhancing their mechanical properties and durability, without destroying their nanostructure, is presented. Irradiation with heavy ions is introduced as a feasible method for increasing the density, and therein the mechanical stability, of cluster-assembled thin films, without critically destroying their nanocrystalline properties. The results of this thesis demonstrate that nanocluster deposition is a suitable technique for the growth of nanostructured thin films. The interactions between nanoclusters and their supporting surfaces must, however, be carefully considered, if a controlled growth of cluster-assembled thin films, with precisely tailored properties, is to be achieved.
Resumo:
The Antarctic system comprises of the continent itself, Antarctica, and the ocean surrounding it, the Southern Ocean. The system has an important part in the global climate due to its size, its high latitude location and the negative radiation balance of its large ice sheets. Antarctica has also been in focus for several decades due to increased ultraviolet (UV) levels caused by stratospheric ozone depletion, and the disintegration of its ice shelves. In this study, measurements were made during three Austral summers to study the optical properties of the Antarctic system and to produce radiation information for additional modeling studies. These are related to specific phenomena found in the system. During the summer of 1997-1998, measurements of beam absorption and beam attenuation coefficients, and downwelling and upwelling irradiance were made in the Southern Ocean along a S-N transect at 6°E. The attenuation of photosynthetically active radiation (PAR) was calculated and used together with hydrographic measurements to judge whether the phytoplankton in the investigated areas of the Southern Ocean are light limited. By using the Kirk formula the diffuse attenuation coefficient was linked to the absorption and scattering coefficients. The diffuse attenuation coefficients (Kpar) for PAR were found to vary between 0.03 and 0.09 1/m. Using the values for KPAR and the definition of the Sverdrup critical depth, the studied Southern Ocean plankton systems were found not to be light limited. Variabilities in the spectral and total albedo of snow were studied in the Queen Maud Land region of Antarctica during the summers of 1999-2000 and 2000-2001. The measurement areas were the vicinity of the South African Antarctic research station SANAE 4, and a traverse near the Finnish Antarctic research station Aboa. The midday mean total albedos for snow were between 0.83, for clear skies, and 0.86, for overcast skies, at Aboa and between 0.81 and 0.83 for SANAE 4. The mean spectral albedo levels at Aboa and SANAE 4 were very close to each other. The variations in the spectral albedos were due more to differences in ambient conditions than variations in snow properties. A Monte-Carlo model was developed to study the spectral albedo and to develop a novel nondestructive method to measure the diffuse attenuation coefficient of snow. The method was based on the decay of upwelling radiation moving horizontally away from a source of downwelling light. This was assumed to have a relation to the diffuse attenuation coefficient. In the model, the attenuation coefficient obtained from the upwelling irradiance was higher than that obtained using vertical profiles of downwelling irradiance. The model results were compared to field measurements made on dry snow in Finnish Lapland and they correlated reasonably well. Low-elevation (below 1000 m) blue-ice areas may experience substantial melt-freeze cycles due to absorbed solar radiation and the small heat conductivity in the ice. A two-dimensional (x-z) model has been developed to simulate the formation and water circulation in the subsurface ponds. The model results show that for a physically reasonable parameter set the formation of liquid water within the ice can be reproduced. The results however are sensitive to the chosen parameter values, and their exact values are not well known. Vertical convection and a weak overturning circulation is generated stratifying the fluid and transporting warmer water downward, thereby causing additional melting at the base of the pond. In a 50-year integration, a global warming scenario mimicked by a decadal scale increase of 3 degrees per 100 years in air temperature, leads to a general increase in subsurface water volume. The ice did not disintegrate due to the air temperature increase after the 50 year integration.