29 resultados para NOES- Nose Only Exposure System
em Helda - Digital Repository of University of Helsinki
Resumo:
Activation of midbrain dopamine systems is thought to be critically involved in the addictive properties of abused substances. Drugs of abuse increase dopamine release in the nucleus accumbens and dorsal striatum, which are the target areas of mesolimbic and nigrostriatal dopamine pathways, respectively. Dopamine release in the nucleus accumbens is thought to mediate the attribution of incentive salience to rewards, and dorsal striatal dopamine release is involved in habit formation. In addition, changes in the function of prefrontal cortex (PFC), the target area of mesocortical dopamine pathway, may skew information processing and memory formation such that the addict pays an abnormal amount of attention to drug-related cues. In this study, we wanted to explore how long-term forced oral nicotine exposure or the lack of catechol-O-methyltransferase (COMT), one of the dopamine metabolizing enzymes, would affect the functioning of these pathways. We also wanted to find out how the forced nicotine exposure or the lack of COMT would affect the consumption of nicotine, alcohol, or cocaine. First, we studied the effect of forced chronic nicotine exposure on the sensitivity of dopamine D2-like autoreceptors in microdialysis and locomotor activity experiments. We found that the sensitivity of these receptors was unchanged after forced oral nicotine exposure, although an increase in the sensitivity was observed in mice treated with intermittent nicotine injections twice daily for 10 days. Thus, the effect of nicotine treatment on dopamine autoreceptor sensitivity depends on the route, frequency, and time course of drug administration. Second, we investigated whether the forced oral nicotine exposure would affect the reinforcing properties of nicotine injections. The chronic nicotine exposure did not significantly affect the development of conditioned place preference to nicotine. In the intravenous self-administration paradigm, however, the nicotine-exposed animals self-administered nicotine at a lower unit dose than the control animals, indicating that their sensitivity to the reinforcing effects of nicotine was enhanced. Next, we wanted to study whether the Comt gene knock-out animals would be a suitable model to study alcohol and cocaine consumption or addiction. Although previous work had shown male Comt knock-out mice to be less sensitive to the locomotor-activating effects of cocaine, the present study found that the lack of COMT did not affect the consumption of cocaine solutions or the development of cocaine-induced place preference. However, the present work did find that male Comt knock-out mice, but not female knock-out mice, consumed ethanol more avidly than their wild-type littermates. This finding suggests that COMT may be one of the factors, albeit not a primary one, contributing to the risk of alcoholism. Last, we explored the effect of COMT deficiency on dorsal striatal, accumbal, and prefrontal cortical dopamine metabolism under no-net-flux conditions and under levodopa load in freely-moving mice. The lack of COMT did not affect the extracellular dopamine concentrations under baseline conditions in any of the brain areas studied. In the prefrontal cortex, the dopamine levels remained high for a prolonged time after levodopa treatment in male, but not female, Comt knock-out mice. COMT deficiency induced accumulation of 3,4-dihydroxyphenylacetic acid, which increased further under levodopa load. Homovanillic acid was not detectable in Comt knock-out animals either under baseline conditions or after levodopa treatment. Taken together, the present results show that although forced chronic oral nicotine exposure affects the reinforcing properties of self-administered nicotine, it is not an addiction model itself. COMT seems to play a minor role in dopamine metabolism and in the development of addiction under baseline conditions, indicating that dopamine function in the brain is well-protected from perturbation. However, the role of COMT becomes more important when the dopaminergic system is challenged, such as by pharmacological manipulation.
Resumo:
Fumonisin B1 (FB1) is a mycotoxin produced by the fungus Fusarium verticillioides, which commonly infects corn and other agricultural products. Fusarium species can also be found in moisture-damaged buildings, and therefore there may also be human exposure to Fusarium mycotoxins, including FB1. FB1 affects the metabolism of sphingolipids by inhibiting the enzyme ceramide synthase. It is neuro-, hepato- and nephrotoxic, and it is classified as possibly carcinogenic to humans. This study aimed to clarify the mechanisms behind FB1-induced neuro- and immunotoxicity. Four neural and glial cell lines of human, rat and mouse origin were exposed to graded doses of FB1 and the effects on the production of reactive oxygen species, lipid peroxidation, intracellular glutathione levels, cell viability and apoptosis were investigated. Furthermore, the effects of FB1, alone or together with lipopolysaccharide (LPS), on the mRNA and protein expression levels of different cytokines and chemokines were studied in human dendritic cells (DC). FB1 induced oxidative stress and cell death in all cell lines studied. Generally, the effects were only seen after prolonged exposure at 10 and 100 µM of FB1. Signs of apoptosis were also seen in all four cell lines. The sensitivities of the cell lines used in this study towards FB1 may be classified as human U-118MG glioblastoma > mouse GT1-7 hypothalamic > rat C6 glioblastoma > human SH-SY5Y neuroblastoma cells. When comparing cell lines of human origin, it can be concluded that glial cells seem to be more sensitive towards FB1 toxicity than those of neural origin. After exposure to FB1, significantly increased levels of the cytokine interferon-γ (IFNγ) were detected in human DC. This observation was further confirmed by FB1-induced levels of the chemokine CXCL9, which is known to be regulated by IFNγ. During co-exposure of DC to both LPS and FB1, significant inhibitions of the LPS-induced levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1β, and their regulatory chemokines CCL3 and CCL5 were observed. FB1 can thus affect immune responses in DC, and therefore, it is rather likely that it also affects other types of cells participating in the immune defence system. When evaluating the toxicity potential of FB1, it is important to consider the effects on different cell types and cell-cell interactions. The results of this study represent new information, especially about the mechanisms behind FB1-induced oxidative stress, apoptosis and immunotoxicity, as well as the varying sensitivities of different cell types towards FB1.
Resumo:
This dissertation is an onomastic study of Finland s stock of ship names (nautonomasticon) recorded over the period 1838 1938. The primary material investigated consists of 2 066 examples of ship names from the fleets of coastal towns, distributed over five sample years. The material is supplemented with two bodies of comparative data; one that consists of 2 535 examples of boat names from the archipelago area at the corresponding time, and another that comprises 482 examples of eighteenth century Finnish ship names. This study clarifies the categories of names that appear the frequency of the names, formation, morphology, linguistic origin, functions, and semantic qualities. By comparing the material with boat names from previous centuries, and from other countries, the characteristics of Finnish vessel names are further highlighted. Additional clarification is brought to the chronological, regional, and social variations, and to the emergence of various forms of systematic naming. This dissertation builds on older research from other countries, and uses traditional onomastic methods alongside a more modern methodology. The approach is interdisciplinary, meaning that the names are explored using facts not only from nautical history, but also from a range of other historical disciplines such as economics, culture, art, and literature. In addition, the approach is socio-onomastic, i.e. that the variations in names are studied in a societal context. Using a synchronised perspective, cognitive linguistic theories have provided the tools for this exploration into the metaphorical and the prototypical meaning of the names, and the semantic domains that the names create. The quantitative analysis has revealed the overall picture of Finnish boat names. Personal names, names from mythology, and place names, emerge as significant categories, alongside nonproprial names in Swedish and Finnish. The interdisciplinary perspective has made it possible to explain certain trends in the stock of boat names, for example, the predisposition towards names from classical mythology, the breakthrough of names taken from the national epos Kalevala, names in the Finnish language from around the middle of the nineteenth century, and the continuing rise of place names during the latter part of the period 1838 1938. The socio-onomastic perspective has also identified clear differences between those ship names used in towns, and those ship names used in the archipelago, and it has clarified how naming conventions tend to spread from town centres to peripheral areas. The cognitive linguistic methods have revealed that the greater part of the vessel names can be interpreted as metaphors, in particular personifications, and that many names are related in their content and also form semantic networks and cognitive systems. The results indicate that there is a mental nautonomasticon that consists of a standard set of traditional ship names, but they also reveal the existence of conscious or unconscious cognitive systems (rules and conventions) that guide the naming of boats.
Resumo:
In a musical context, the pitch of sounds is encoded according to domain-general principles not confined to music or even to audition overall but common to other perceptual and cognitive processes (such as multiple pattern encoding and feature integration), and to domain-specific and culture-specific properties related to a particular musical system only (such as the pitch steps of the Western tonal system). The studies included in this thesis shed light on the processing stages during which pitch encoding occurs on the basis of both domain-general and music-specific properties, and elucidate the putative brain mechanisms underlying pitch-related music perception. Study I showed, in subjects without formal musical education, that the pitch and timbre of multiple sounds are integrated as unified object representations in sensory memory before attentional intervention. Similarly, multiple pattern pitches are simultaneously maintained in non-musicians' sensory memory (Study II). These findings demonstrate the degree of sophistication of pitch processing at the sensory memory stage, requiring neither attention nor any special expertise of the subjects. Furthermore, music- and culture-specific properties, such as the pitch steps of the equal-tempered musical scale, are automatically discriminated in sensory memory even by subjects without formal musical education (Studies III and IV). The cognitive processing of pitch according to culture-specific musical-scale schemata hence occurs as early as at the sensory-memory stage of pitch analysis. Exposure and cortical plasticity seem to be involved in musical pitch encoding. For instance, after only one hour of laboratory training, the neural representations of pitch in the auditory cortex are altered (Study V). However, faulty brain mechanisms for attentive processing of fine-grained pitch steps lead to inborn deficits in music perception and recognition such as those encountered in congenital amusia (Study VI). These findings suggest that predispositions for exact pitch-step discrimination together with long-term exposure to music govern the acquisition of the automatized schematic knowledge of the music of a particular culture that even non-musicians possess.
Resumo:
In the present work, effects of stimulus repetition and change in a continuous stimulus stream on the processing of somatosensory information in the human brain were studied. Human scalp-recorded somatosensory event-related potentials (ERPs) and magnetoencephalographic (MEG) responses rapidly diminished with stimulus repetition when mechanical or electric stimuli were applied to fingers. On the contrary, when the ERPs and multi-unit a ctivity (MUA) were directly recorded from the primary (SI) and secondary (SII) somatosensory cortices in a monkey, there was no marked decrement in the somatosensory responses as a function of stimulus repetition. These results suggest that this rate effect is not due to the response diminution in the SI and SII cortices. Obviously the responses to the first stimulus after a long "silent" period are nhanced due to unspecific initial orientation, originating in more broadly distributed and/or deeper neural structures, perhaps in the prefrontal cortices. With fast repetition rates not only the late unspecific but also some early specific somatosensory ERPs were diminished in amplitude. The fast decrease of the ERPs as a function of stimulus repetition is mainly due to the disappearance of the orientation effect and with faster repetition rates additively due to stimulus specific refractoriness. A sudden infrequent change in the continuous stimulus stream also enhanced somatosensory MEG responses to electric stimuli applied to different fingers. These responses were quite similar to those elicited by the deviant stimuli alone when the frequent standard stimuli were omitted. This enhancement was obviously due to the release from refractoriness because the neural structures generating the responses to the infrequent deviants had more time to recover from the refractoriness than the respective structures for the standards. Infrequent deviant mechanical stimuli among frequent standard stimuli also enhanced somatosensory ERPs and, in addition, they elicited a new negative wave which did not occur in the deviants-alone condition. This extra negativity could be recorded to deviations in the stimulation site and in the frequency of the vibratory stimuli. This response is probably a somatosensory analogue of the auditory mismatch negativity (MMN) which has been suggested to reflect a neural mismatch process between the sensory input and the sensory memory trace.
Resumo:
Objective and background. Tobacco smoking, pancreatitis and diabetes mellitus are the only known causes of pancreatic cancer, leaving ample room for yet unidentified determinants. This is an empirical study on a Finnish data on occupational exposures and pancreatic cancer risk, and a non-Bayesian and a hierarchical Bayesian meta-analysis of data on occupational factors and pancreatic cancer. Methods. The case-control study analyzed 595 incident cases of pancreatic cancer and 1,622 controls of stomach, colon, and rectum cancer, diagnosed 1984-1987 and known to be dead by 1990 in Finland. The next-of-kin responded to a mail questionnaire on job and medical histories and lifestyles. Meta-analysis of occupational risk factors of pancreatic cancer started off with 1,903 identified studies. The analyses were based on different subsets of that database. Five epidemiologists examined the reports and extracted the pertinent data using a standardized extraction form that covered 20 study descriptors and the relevant relative risk estimates. Random effects meta-analyses were applied for 23 chemical agents. In addition, hierarchical Bayesian models for meta-analysis were applied to the occupational data of 27 job titles using job exposure matrix as a link matrix and estimating the relative risks of pancreatic cancer associated with nine occupational agents. Results. In the case-control study, logistic regressions revealed excess risks of pancreatic cancer associated with occupational exposures to ionizing radiation, nonchlorinated solvents, and pesticides. Chlorinated hydrocarbon solvents and related compounds, used mainly in metal degreasing and dry cleaning, are emerging as likely risk factors of pancreatic cancer in the non-Bayesian and the hierarchical Bayesian meta-analysis. Consistent excess risk was found for insecticides, and a high excess for nickel and nickel compounds in the random effects meta-analysis but not in the hierarchical Bayesian meta-analysis. Conclusions. In this study occupational exposure to chlorinated hydrocarbon solvents and related compounds and insecticides increase risk of pancreatic cancer. Hierarchical Bayesian meta-analysis is applicable when studies addressing the agent(s) under study are lacking or very few, but several studies address job titles with potential exposure to these agents. A job-exposure matrix or a formal expert assessment system is necessary in this situation.
Resumo:
Alcoholic liver disease (ALD) is a well recognized and growing health problem worldwide. ALD advances from fatty liver to inflammation, necrosis, fibrosis and cirrhosis. There is accumulating evidence that the innate immune system is involved in alcoholic liver injury. Within the innate and acquired immune systems, the complement system participates in inflammatory reactions and in the elimination of invading foreign, as well as endogenous apoptotic or injured cells. The present study aimed at evaluating the role of the complement system in the development of alcoholic liver injury. First, in order to study the effects of chronic ethanol intake on the complement system, the deposition of complement components in liver and the expression of liver genes associated with complement in animals with alcohol-induced liver injury were examined. It was demonstrated that chronic alcohol exposure leads to hepatic deposition of the complement components C1, C3, C8 and C9 in the livers of rats. Liver gene expression analysis showed that ethanol up-regulated the expression of transcripts for complement factors B, C1qA, C2, C3 and clusterin. In contrast, ethanol down-regulated the expression of the complement regulators factor H, C4bp and factor D and the terminal complement components C6, C8α and C9. Secondly, the role of the terminal complement pathway in the development of ALD was evaluated by using rats genetically deficient in the complement component C6 (C6-/-). It was found that chronic ethanol feeding induced more liver pathology (steatosis and inflammatory changes) in C6-/- rats than in wild type rats. The hepatic triacylglyceride content and plasma alanine aminotransferase activity increased in C6-/- rats, supporting the histopathological findings and elevation of the plasma pro-/anti-inflammatory TNF-/IL-10 ratio was also more marked in C6-/- rats. Third, the role of the alternative pathway in the development of alcoholic liver steatosis was characterized by using C3-/- mice. In C3-/- mice ethanol feeding tended to reduce steatosis and had no further effect on liver triacylglyceride, liver/body weight ratio nor on liver malondialdehyde level and serum alanine aminotransferase activity. In C3-/- mice alcohol-induced liver steatosis was reduced also after an acute alcohol challenge. In both wild type and C3-/- mice ethanol markedly reduced serum cholesterol and ApoA-I levels, phospholipid transfer protein activity and hepatic mRNA levels of fatty acid binding proteins and fatty acid -oxidation enzymes. In contrast, exclusively in C3-/- mice, ethanol treatment increased serum and liver adiponectin levels but down-regulated the expression of transcripts of lipogenic enzymes, adiponectin receptor 2 and adipose differentiation-related protein and up-regulated phospholipase D1. In conclusion, this study has demonstrated that the complement system is involved in the development of alcohol-induced liver injury. Chronic alcohol exposure causes local complement activation and induction of mRNA expression of classical and alternative pathway components in the liver. In contrast expression of the terminal pathway components and soluble regulators were decreased. A deficient terminal complement pathway predisposes to alcoholic liver damage and promotes a pro-inflammatory cytokine response. Complement component C3 contributes to the development of alcohol-induced fatty liver and its consequences by affecting regulatory and specific transcription factors of lipid homeostasis.
Resumo:
A new rock mass classification scheme, the Host Rock Classification system (HRC-system) has been developed for evaluating the suitability of volumes of rock mass for the disposal of high-level nuclear waste in Precambrian crystalline bedrock. To support the development of the system, the requirements of host rock to be used for disposal have been studied in detail and the significance of the various rock mass properties have been examined. The HRC-system considers both the long-term safety of the repository and the constructability in the rock mass. The system is specific to the KBS-3V disposal concept and can be used only at sites that have been evaluated to be suitable at the site scale. By using the HRC-system, it is possible to identify potentially suitable volumes within the site at several different scales (repository, tunnel and canister scales). The selection of the classification parameters to be included in the HRC-system is based on an extensive study on the rock mass properties and their various influences on the long-term safety, the constructability and the layout and location of the repository. The parameters proposed for the classification at the repository scale include fracture zones, strength/stress ratio, hydraulic conductivity and the Groundwater Chemistry Index. The parameters proposed for the classification at the tunnel scale include hydraulic conductivity, Q´ and fracture zones and the parameters proposed for the classification at the canister scale include hydraulic conductivity, Q´, fracture zones, fracture width (aperture + filling) and fracture trace length. The parameter values will be used to determine the suitability classes for the volumes of rock to be classified. The HRC-system includes four suitability classes at the repository and tunnel scales and three suitability classes at the canister scale and the classification process is linked to several important decisions regarding the location and acceptability of many components of the repository at all three scales. The HRC-system is, thereby, one possible design tool that aids in locating the different repository components into volumes of host rock that are more suitable than others and that are considered to fulfil the fundamental requirements set for the repository host rock. The generic HRC-system, which is the main result of this work, is also adjusted to the site-specific properties of the Olkiluoto site in Finland and the classification procedure is demonstrated by a test classification using data from Olkiluoto. Keywords: host rock, classification, HRC-system, nuclear waste disposal, long-term safety, constructability, KBS-3V, crystalline bedrock, Olkiluoto
Resumo:
The main objective of the study is to evaluate the Finnish central government s foreign borrowing between the years 1862 and 1938. Most of this period was characterised by deep capital market integration that bears resemblance to the liberal world financial order at the turn of the millennium. The main aim is to analyse the credit risk associated with the state and its determination by evaluating the world financial market centres perception of Finland. By doing this, the study is also expected to provide an additional dimension to Finland s political and economic history by incorporating into the research the assessments of international capital markets regarding Finland during a period that witnessed profound political and economic changes in Finnish society. The evaluation of the credit risk mainly relies on exchange-rate risk free time series of the state s foreign bonds. They have been collected from quotations in the stock exchanges in Helsinki, Hamburg, Paris and London. In addition, it investigates Finland s exposure to short-term debt and Moody s credit ratings assigned to Finland. The study emphasises the importance of the political risk. It suggests that the hey-day of the state s reliance on foreign capital markets took place during last few decades of the 19th century when Finland enjoyed a wide autonomy in the Russian Empire and prudently managed its economy, highlighted in Finland s adherence to the international gold standard. Political confrontations in Finland and, in particular, in Russia and the turbulence of the world financial system prevented the return of this beneficial position again. Through its issuance of foreign bonds the state was able to import substantial amounts of foreign capital, which was sorely needed to foster economic development in Finland. Moreover, the study argues that the state s presence in the western capital markets not only had economic benefits, but it also increased the international awareness of Finland s distinct and separate status in the Russian Empire and later underlined its position as an independent republic.
Resumo:
In aquatic environments, endocrine disrupting chemicals (EDCs) that interfere with the endocrinology of males and females form a threat to the maintenance of populations. EDCs are a diverse group of natural and manmade chemicals that already at very low concentrations (at nanogram levels) can have severe effects on reproduction by individuals, e.g. complete sex reversal, feminisation of males, impaired reproduction even resulting in near extinction of populations. With regard to fish, despite the extensive literature on physiological effects of EDCs, very little is known about potential population-level effects. In this thesis, I examined how 17α-ethinyl estradiol (EE2), a synthetic estrogen used in oral contraceptive pills, affects the reproductive behaviour of a marine fish, the sand goby (Pomatoschistus minutus). The aims were fourfold. First, I investigated how exposure to EE2 affects courtship and parental care of sand goby males. Secondly, I looked at effects on the mating system and sexual selection. In the third study, I observed the effects of exposure in a social context where exposed males had to compete with non-exposed males for resources and mates. Finally, I studied the effects of exposure on male-male competition and male aggressive behaviour. This work revealed that EE2 exposure impairs the ability of males to acquire and defend a nest, as well as diminishes the attractiveness of males to females by decreasing their courtship and aggressive behaviour. These effects are harmful for a male whose reproductive success is determined by the ability to compete for limited resources and to attract mates. Furthermore, this thesis showed that selection on male size was relaxed after EE2 exposure and male size had a smaller effect on mating success. These effects can be of a profound nature as they interfere with sexual selection, and may in the long run lead to the loss of traits maintained through sexual selection. The thesis shows that an exposure to environmentally relevant levels of EE2 clearly reduces the chances of individuals to reproduce successfully. Furthermore, it strongly suggests that several types of biomarkers should be used to detect and assess the effects of EDC exposure because severe behavioural effects can sometimes be seen before effects are detectable at the molecular or morphometric level. Behavioural assays should be considered an important complementary tool for the standard ecotoxicological assays because observed behavioural changes have direct and negative effects on fitness, while the connection between changes in molecular expression and fitness may be less obvious.