13 resultados para Mucosal Damage
em Helda - Digital Repository of University of Helsinki
Resumo:
Prostate cancer is the most common noncutaneous malignancy and the second leading cause of cancer mortality in men. In 2004, 5237 new cases were diagnosed and altogether 25 664 men suffered from prostate cancer in Finland (Suomen Syöpärekisteri). Although extensively investigated, we still have a very rudimentary understanding of the molecular mechanisms leading to the frequent transformation of the prostate epithelium. Prostate cancer is characterized by several unique features including the multifocal origin of tumors and extreme resistance to chemotherapy, and new treatment options are therefore urgently needed. The integrity of genomic DNA is constantly challenged by genotoxic insults. Cellular responses to DNA damage involve elegant checkpoint cascades enforcing cell cycle arrest, thus facilitating damage repair, apoptosis or cellular senescence. Cellular DNA damage triggers the activation of tumor suppressor protein p53 and Wee1 kinase which act as executors of the cellular checkpoint responses. These are essential for genomic integrity, and are activated in early stages of tumorigenesis in order to function as barriers against tumor formation. Our work establishes that the primary human prostatic epithelial cells and prostatic epithelium have unexpectedly indulgent checkpoint surveillance. This is evidenced by the absence of inhibitory Tyr15 phosphorylation on Cdk2, lack of p53 response, radioresistant DNA synthesis, lack of G1/S and G2/M phase arrest, and presence of persistent gammaH2AX damage foci. We ascribe the absence of inhibitory Tyr15 phosphorylation to low levels of Wee1A, a tyrosine kinase and negative regulator of cell cycle progression. Ectopic Wee1A kinase restored Cdk2-Tyr15 phosphorylation and efficiently rescued the ionizing radiation-induced checkpoints in the human prostatic epithelial cells. As variability in the DNA damage responses has been shown to underlie susceptibility to cancer, our results imply that a suboptimal checkpoint arrest may greatly increase the accumulation of genetic lesions in the prostate epithelia. We also show that small molecules can restore p53 function in prostatic epithelial cells and may serve as a paradigm for the development of future therapeutic agents for the treatment of prostate cancer We hypothesize that the prostate has evolved to activate the damage surveillance pathways and molecules involved in these pathways only to certain stresses in extreme circumstances. In doing so, this organ inadvertently made itself vulnerable to genotoxic stress, which may have implications in malignant transformation. Recognition of the limited activity of p53 and Wee1 in the prostate could drive mechanism-based discovery of preventative and therapeutic agents.
Resumo:
The aim of this thesis was to compare the degradation of human oral epithelial proteins by proteinases of different Candida yeast species. We focused on proteins associated with Candida invasion in the cell-to-cell junction, the basement membrane zone, the extracellular matrix, and local tissue inflammatory regulators. Another main objective was to evaluate the effect of the yeast/hyphal transition and pH on the degradative capability of Candida. The enzymatic activity of the Candida proteinases was verified by gelatin zymography. Laminins-332 (Lm-322) and -511(Lm-511) produced by human oral keratinocytes were gathered from the growth media, and E-cadherin (E-Cad) was isolated from the cell membrane of the keratinocytes by immunoprecipitation. The proteins were incubated with Candida cells and cell-free fractions, and degradation was detected by fluorography. Fibronectin degradation was visualised by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE). Matrix metalloproteinase-9 (MMP-9) activation and tissue inhibitor of metalloproteinase-1 (TIMP-1) fragmentation was detected by using the Western blot and enhanced chemoluminescence (ECL) techniques. Residual activity of TIMP-1 was evaluated by a casein degradation assay. A fluorimetric assay was used to detect and compare Candida proteinase activities with MMP-9. These studies showed that the ability of the different Candida yeast species to degrade human Lm-332, fibronectin, and E-Cad vary from strain to strain and that this degradation is pH-dependent. This indicates that local acidic pH in tissue may play a role in tissue destruction by activating Candida proteinases and aid invasion of Candida into deeper tissue. A potential correlation exists between the morphological form of the yeasts and the degradative ability; the C. albicans yeast form seems to be related to superficial infections, and hyphal forms can apparently invade deeper tissues between the epithelial cells by degradation of E-Cad. Basement membrane degradation is possible, especially in the junctional epithelium, which contains only Lm-332 as a structural component. Local tissue host inflammatory mediators, such as MMP-9, were activated, and TIMP-1 was degraded by certain Candida species, thus indicating the possibility of a weakened host tissue defence mechanism in vivo.
Resumo:
Esophageal and gastroesophageal junction (GEJ) adenocarcinoma is rapidly increasing disease with a pathophysiology connected to oxidative stress. Exact pre-treatment clinical staging is essential for optimal care of this lethal malignancy. The cost-effectiviness of treatment is increasingly important. We measured oxidative metabolism in the distal and proximal esophagus by myeloperoxidase activity (MPA), glutathione content (GSH), and superoxide dismutase (SOD) in 20 patients operated on with Nissen fundoplication and 9 controls during a 4-year follow-up. Further, we assessed the oxidative damage of DNA by 8-hydroxydeoxyguanosine (8-OHdG) in esophageal samples of subjects (13 Barrett s metaplasia, 6 Barrett s esophagus with high-grade dysplasia, 18 adenocarcinoma of the distal esophagus/GEJ, and 14 normal controls). We estimated the accuracy (42 patients) and preoperative prognostic value (55 patients) of PET compared with computed tomography (CT) and endoscopic ultrasound (EUS) in patients with adenocarcinoma of the esophagus/GEJ. Finally, we clarified the specialty-related costs and the utility of either radical (30 patients) or palliative (23 patients) treatment of esophageal/GEJ carcinoma by the 15 D health-related quality-of-life (HRQoL) questionnaire and the survival rate. The cost-utility of radical treatment of esophageal/GEJ carcinoma was investigated using a decision tree analysis model comparing radical, palliative, and hypothetical new treatment. We found elevated oxidative stress ( measured by MPA) and decreased antioxidant defense (measured by GSH) after antireflux surgery. This indicates that antireflux surgery is not a perfect solution for oxidative stress of the esophageal mucosa. Elevated oxidative stress in turn may partly explain why adenocarcinoma of the distal esophagus is found even after successful fundoplication. In GERD patients, proximal esophageal mucosal anti-oxidative defense seems to be defective before and even years after successful antireflux surgery. In addition, antireflux surgery apparently does not change the level of oxidative stress in the proximal esophagus, suggesting that defective mucosal anti-oxidative capacity plays a role in development of oxidative damage to the esophageal mucosa in GERD. In the malignant transformation of Barrett s esophagus an important component appears to be oxidative stress. DNA damage may be mediated by 8-OHdG, which we found to be increased in Barrett s epithelium and in high-grade dysplasia as well as in adenocarcinoma of the esophagus/GEJ compared with controls. The entire esophagus of Barrett s patients suffers from increased oxidative stress ( measured by 8-OhdG). PET is a useful tool in the staging and prognostication of adenocarcinoma of the esophagus/GEJ detecting organ metastases better than CT, although its accuracy in staging of paratumoral and distant lymph nodes is limited. Radical surgery for esophageal/GEJ carcinoma provides the greatest benefit in terms of survival, and its cost-utility appears to be the best of currently available treatments.
Resumo:
The study assessed whether plasma concentrations of complement factors C3, C4, or immunoglobulins, serum classical pathway hemolytyic activity, or polymorphisms in the class I and II HLA genes, isotypes and gene numbers of C4, or allotypes of IgG1 and IgG3 heavy chain genes were associated with severe frequently recurring or chronic mucosal infections. According to strict clinical criteria, 188 consecutive voluntary patients without a known immunodeficiency and 198 control subjects were recruited. Frequencies of low levels in IgG1, IgG2, IgG3 and IgG4 were for the first time tested from adult general population and patients with acute rhinosinusitis. Frequently recurring intraoral herpes simplex type 1 infections, a rare form of the disease, was associated with homozygosity in HLA -A*, -B*, -C*, and -DR* genes. Frequently recurrent genital HSV-2 infections were associated with low levels of IgG1 and IgG3, present in 54% of the recruited patients. This association was partly allotype-dependent. The G3mg,G1ma/ax haplotype, together with low IgG3, was more common in patients than in control subjects who lacked antibodies against herpes simplex viruses. This is the first found immunogenetic deficiency in otherwise healthy adults that predisposes to highly frequent mucosal herpes recurrences. According to previous studies, HSV effectively evades the allotype G1ma/ax of IgG1, whereas G3mg is associated with low IgG3. Certain HLA genes were more common in patients than in control subjects. Having more than one C4A or C4B gene was associated with neuralgias caused by the virus. Low levels of IgA, IgG1, IgG2, IgG3, and IgG4 were common in the general adult population, but even more frequent in patients with chronic sinusitis. Only low IgG1 was more common chronic than in acute rhinosinusitis. Clinically, nasal polyposis and bronchial asthma were associated with complicated disease forms. The best differentiating immunologic parameters were C4A deficiency and the combination of low plasma IgG4 together with low IgG1 or IgG2, performing almost equally. The lack of C4A, IgA, and IgG4, all known to possess anti-inflammatory activity, together with a concurrently impaired immunity caused by low subclass levels, may predispose to chronic disease forms. In severe chronic adult periodontitis, any C4A or C4B deficiency combined was associated with the disease. The new quantitative analysis of C4 genes and the conventional C4 allotyping method complemented each other. Lowered levels of plasma C3 or C4 or both, and serum CH50 were found in herpes and periodontitis patients. In rhinosinusitis, there was a linear trend with the highest levels found in the order: acute > chronic rhinosinusitis > general population > blood donors with no self-reported history of rhinosinusitis. Complement is involved in the defense against the tested mucosal infections. Seemingly immunocompetent patients with chronic or recurrent mucosal infections frequently have subtle weaknesses in different arms of immunity. Their susceptibility to chronic disease forms may be caused by these. Host s subtly impaired immunity often coincides with effective immune evasion from the same arms of immunity by the disease-causing pathogens. The interpretation of low subclass levels, if no additional predisposing immunologic factors are tested, is difficult and of limited value in early diagnosis and treatment.
Resumo:
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS1) is an autoimmune disease caused by a loss-of function mutation in the autoregulator gene (AIRE). Patients with APECED suffer from chronic mucocutaneous candidosis (CMC) of the oral cavity and oesophagus often since early childhood. The patients are mainly colonized with Candida albicans and decades of exposure to antifungal agents have lead to the development of clinical and microbiological resistance in the treatment of CMC in the APECED patient population in Finland. A high incidence of oral squamous cell carcinoma is associated with oral CMC lesions in the APECED patients over the age of 25. The overall aim of this study was firstly, to investigate the effect of long-term azole exposure on the metabolism of oral C. albicans isolates from APECED patients with CMC and secondly, to analyse the specific molecular mechanisms that are responsible for these changes. The aim of the first study was to examine C. albicans strains from APECED patients and the level of cross-resistance to miconazole, the recommended topical compound for the treatment of oral candidosis. A total of 16% of the strains had decreased susceptibility to miconazole and all of these isolates had decreased susceptibility to fluconazole. Miconazole MICs also correlated with MICs to voriconazole and posaconazole. A significant positive correlation between the years of miconazole exposure and the MICs to azole antifungal agents was also found. These included azoles the patients had not been exposed to. The aim of our second study was to determine if the APECED patients are continuously colonized with the same C. albicans strains despite extensive antifungal treatment and to gain a deeper insight into the genetic changes leading to azole resistance. The strains were typed using MLST and our results confirmed that all patients were persistently colonized with the same or a genetically related strain despite antifungal treatment between isolations. No epidemic strains were found. mRNA expression was analysed by Northern blotting, protein level by western blotting, and TAC1 and ERG11 genes were sequenced. The main molecular mechanisms resulting in azole resistance were gain-of-function mutations in TAC1 leading to over expression of CDR1 and CDR2, genes linked to azole resistance. Several strains had also developed point mutations in ERG11, another gene linked to azole resistance. In the third study we used gas chromatography to test whether the level of carcinogenic acetaldehyde produced by C. albicans strains isolated from APECED patients were different from the levels produced by strains isolated from healthy controls and oral carcinoma patients. Acetaldehyde is a carcinogenic product of alcohol fermentation and metabolism in microbes associated with cancers of the upper digestive tract. In yeast, acetaldehyde is a by-product of the pyruvate bypass that converts pyruvate into acetyl-CoA during fermentation. Our results showed that strains isolated from APECED patients produced mutagenic levels of acetaldehyde in the presence of glucose (100mM, 18g/l) and the levels produced were significantly higher than those from strains isolated from controls and oral carcinoma patients. All strains in the study, however, were found to produce mutagenic levels of acetaldehyde in the presence of ethanol (11mM). The glucose and ethanol levels used in this study are equivalent to those found in food and beverages and our results highlight the role of dietary sugars and ethanol on carcinogenesis. The aims of our fourth study were to research the effect of growth conditions in the levels of acetaldehyde produced by C. albicans and to gain deeper insight into the role of different genes in the pyruvate-bypass in the production of high acetaldehyde levels. Acetaldehyde production in the presence of glucose increased by 17-fold under moderately hypoxic conditions compared to the levels produced under normoxic conditions. Under moderately hypoxic conditions acetaldehyde levels did not correlate with the expression of ADH1 and ADH2, genes catalyzing the oxidation of ethanol to acetaldehyde, or PDC11, the gene catalyzing the oxidation of pyruvate to acetaldehyde but correlated with the expression of down-stream genes ALD6 and ACS1. Our results highlight a problem where indiscriminate use of azoles may influence azole susceptibility and lead to the development of cross-resistance. Despite clinically successful treatment leading to relief of symptoms, colonization by C. albicans strains is persistent within APECED patients. Microevolution and point mutations that occur in strains may lead to the development of azole-resistant isolates and metabolic changes leading to increased production of carcinogenic acetaldehyde.
Resumo:
Prostate cancer is one of the most prevalent cancer types in men. The development of prostate tumors is known to require androgen exposure, and several pathways governing cell growth are deregulated in prostate tumorigenesis. Recent genetic studies have revealed that complex gene fusions and copy - number alterations are frequent in prostate cancer, a unique feature among solid tumors. These chromosomal aberrations are though to arise as a consequence of faulty repair of DNA double strand breaks (DSB). Most repair mechanisms have been studied in detail in cancer cell lines, but how DNA damage is detected and repaired in normal differentiated human cells has not been widely addressed. The events leading to the gene fusions in prostate cancer are under rigorous studies, as they not only shed light on the basic pathobiologic mechanisms but may also produce molecular targets for prostate cancer treatment and prevention. Prostate and seminal vesicles are part of the male reproductive system. They share similar structure and function but differ dramatically in their cancer incidence. Approximately fifty primary seminal vesicle carcinomas have been reported worldwide. Surprisingly, only little is known on why seminal vesicles are resistant to neoplastic changes. As both tissues are androgen dependent, it is a mystery that androgen signaling would only lead to tumors in prostate tissue. In this work, we set up novel ex vivo human tissue culture models of prostate and seminal vesicles, and used them to study how DNA damage is recognized in normal epithelium. One of the major DNA - damage inducible pathways, mediated by the ATM kinase, was robustly activated in all main cell types of both tissues. Interestingly, we discovered that secretory epithelial cells had less histone variant H2A.X and after DNA damage lower levels of H2AX were phosphorylated on serine 139 (γH2AX) than in basal or stromal cells. γH2AX has been considered essential for efficient DSB repair, but as there were no significant differences in the γH2AX levels between the two tissues, it seems more likely that the role of γH2AX is less important in postmitotic cells. We also gained insight into the regulation of p53, an important transcription factor that protects genomic integrity via multiple mechanisms, in human tissues. DSBs did not lead to a pronounced activation of p53, but treatments causing transcriptional stress, on the other hand, were able to launch a notable p53 response in both tissue types. In general, ex vivo culturing of human tissues provided unique means to study differentiated cells in their relevant tissue context, and is suited for testing novel therapeutic drugs before clinical trials. In order to study how prostate and seminal vesicle epithelial cells are able to activate DNA damage induced cell cycle checkpoints, we used primary cultures of prostate and seminal vesicle epithelial cells. To our knowledge, we are the first to report isolation of human primary seminal vesicle cells. Surprisingly, human prostate epithelial cells did not activate cell cycle checkpoints after DSBs in part due to low levels of Wee1A, a kinase regulating CDK activity, while primary seminal vesicle epithelial cells possessed proficient cell cycle checkpoints and expressed high levels of Wee1A. Similarly, seminal vesicle cells showed a distinct activation of the p53 - pathway after DSBs that did not occur in prostate epithelial cells. This indicates that p53 protein function is under different control mechanisms in the two cell types, which together with proficient cell cycle checkpoints may be crucial in protecting seminal vesicles from endogenous and exogenous DNA damaging factors and, as a consequence, from carcinogenesis. These data indicate that two very similar organs of male reproductive system do not respond to DNA damage similarly. The differentiated, non - replicating cells of both tissues were able to recognize DSBs, but under proliferation human prostate epithelial cells had deficient activation of the DNA damage response. This suggests that prostate epithelium is most vulnerable to accumulating genomic aberrations under conditions where it needs to proliferate, for example after inflammatory cellular damage.