18 resultados para Modelling lifetime data
em Helda - Digital Repository of University of Helsinki
Resumo:
This thesis presents novel modelling applications for environmental geospatial data using remote sensing, GIS and statistical modelling techniques. The studied themes can be classified into four main themes: (i) to develop advanced geospatial databases. Paper (I) demonstrates the creation of a geospatial database for the Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands, south-western Finland; (ii) to analyse species diversity and distribution using GIS techniques. Paper (II) presents a diversity and geographical distribution analysis for Scopulini moths at a world-wide scale; (iii) to study spatiotemporal forest cover change. Paper (III) presents a study of exotic and indigenous tree cover change detection in Taita Hills Kenya using airborne imagery and GIS analysis techniques; (iv) to explore predictive modelling techniques using geospatial data. In Paper (IV) human population occurrence and abundance in the Taita Hills highlands was predicted using the generalized additive modelling (GAM) technique. Paper (V) presents techniques to enhance fire prediction and burned area estimation at a regional scale in East Caprivi Namibia. Paper (VI) compares eight state-of-the-art predictive modelling methods to improve fire prediction, burned area estimation and fire risk mapping in East Caprivi Namibia. The results in Paper (I) showed that geospatial data can be managed effectively using advanced relational database management systems. Metapopulation data for Melitaea cinxia butterfly was successfully combined with GPS-delimited habitat patch information and climatic data. Using the geospatial database, spatial analyses were successfully conducted at habitat patch level or at more coarse analysis scales. Moreover, this study showed it appears evident that at a large-scale spatially correlated weather conditions are one of the primary causes of spatially correlated changes in Melitaea cinxia population sizes. In Paper (II) spatiotemporal characteristics of Socupulini moths description, diversity and distribution were analysed at a world-wide scale and for the first time GIS techniques were used for Scopulini moth geographical distribution analysis. This study revealed that Scopulini moths have a cosmopolitan distribution. The majority of the species have been described from the low latitudes, sub-Saharan Africa being the hot spot of species diversity. However, the taxonomical effort has been uneven among biogeographical regions. Paper III showed that forest cover change can be analysed in great detail using modern airborne imagery techniques and historical aerial photographs. However, when spatiotemporal forest cover change is studied care has to be taken in co-registration and image interpretation when historical black and white aerial photography is used. In Paper (IV) human population distribution and abundance could be modelled with fairly good results using geospatial predictors and non-Gaussian predictive modelling techniques. Moreover, land cover layer is not necessary needed as a predictor because first and second-order image texture measurements derived from satellite imagery had more power to explain the variation in dwelling unit occurrence and abundance. Paper V showed that generalized linear model (GLM) is a suitable technique for fire occurrence prediction and for burned area estimation. GLM based burned area estimations were found to be more superior than the existing MODIS burned area product (MCD45A1). However, spatial autocorrelation of fires has to be taken into account when using the GLM technique for fire occurrence prediction. Paper VI showed that novel statistical predictive modelling techniques can be used to improve fire prediction, burned area estimation and fire risk mapping at a regional scale. However, some noticeable variation between different predictive modelling techniques for fire occurrence prediction and burned area estimation existed.
Resumo:
The purpose of this paper is to test for the effect of uncertainty in a model of real estate investment in Finland during the hihhly cyclical period of 1975 to 1998. We use two alternative measures of uncertainty. The first measure is the volatility of stock market returns and the second measure is the heterogeneity in the answers of the quarterly business survey of the Confederation of Finnish Industry and Employers. The econometric analysis is based on the autoregressive distributed lag (ADL) model and the paper applies a 'general-to-specific' modelling approach. We find that the measure of heterogeneity is significant in the model, but the volatility of stock market returns is not. The empirical results give some evidence of an uncertainty-induced threshold slowing down real estate investment in Finland.
Resumo:
Many active pharmaceutical ingredients (APIs) have both anhydrate and hydrate forms. Due to the different physicochemical properties of solid forms, the changes in solid-state may result in therapeutic, pharmaceutical, legal and commercial problems. In order to obtain good solid dosage form quality and performance, there is a constant need to understand and control these phase transitions during manufacturing and storage. Thus it is important to detect and also quantify the possible transitions between the different forms. In recent years, vibrational spectroscopy has become an increasingly popular tool to characterise the solid-state forms and their phase transitions. It offers several advantages over other characterisation techniques including an ability to obtain molecular level information, minimal sample preparation, and the possibility of monitoring changes non-destructively in-line. Dehydration is the phase transition of hydrates which is frequently encountered during the dosage form production and storage. The aim of the present thesis was to investigate the dehydration behaviour of diverse pharmaceutical hydrates by near infrared (NIR), Raman and terahertz pulsed spectroscopic (TPS) monitoring together with multivariate data analysis. The goal was to reveal new perspectives for investigation of the dehydration at the molecular level. Solid-state transformations were monitored during dehydration of diverse hydrates on hot-stage. The results obtained from qualitative experiments were used to develop a method and perform the quantification of the solid-state forms during process induced dehydration in a fluidised bed dryer. Both in situ and in-line process monitoring and quantification was performed. This thesis demonstrated the utility of vibrational spectroscopy techniques and multivariate modelling to monitor and investigate dehydration behaviour in situ and during fluidised bed drying. All three spectroscopic methods proved complementary in the study of dehydration. NIR spectroscopy models could quantify the solid-state forms in the binary system, but were unable to quantify all the forms in the quaternary system. Raman spectroscopy models on the other hand could quantify all four solid-state forms that appeared upon isothermal dehydration. The speed of spectroscopic methods makes them applicable for monitoring dehydration and the quantification of multiple forms was performed during phase transition. Thus the solid-state structure information at the molecular level was directly obtained. TPS detected the intermolecular phonon modes and Raman spectroscopy detected mostly the changes in intramolecular vibrations. Both techniques revealed information about the crystal structure changes. NIR spectroscopy, on the other hand was more sensitive to water content and hydrogen bonding environment of water molecules. This study provides a basis for real time process monitoring using vibrational spectroscopy during pharmaceutical manufacturing.
Resumo:
In genetic epidemiology, population-based disease registries are commonly used to collect genotype or other risk factor information concerning affected subjects and their relatives. This work presents two new approaches for the statistical inference of ascertained data: a conditional and full likelihood approaches for the disease with variable age at onset phenotype using familial data obtained from population-based registry of incident cases. The aim is to obtain statistically reliable estimates of the general population parameters. The statistical analysis of familial data with variable age at onset becomes more complicated when some of the study subjects are non-susceptible, that is to say these subjects never get the disease. A statistical model for a variable age at onset with long-term survivors is proposed for studies of familial aggregation, using latent variable approach, as well as for prospective studies of genetic association studies with candidate genes. In addition, we explore the possibility of a genetic explanation of the observed increase in the incidence of Type 1 diabetes (T1D) in Finland in recent decades and the hypothesis of non-Mendelian transmission of T1D associated genes. Both classical and Bayesian statistical inference were used in the modelling and estimation. Despite the fact that this work contains five studies with different statistical models, they all concern data obtained from nationwide registries of T1D and genetics of T1D. In the analyses of T1D data, non-Mendelian transmission of T1D susceptibility alleles was not observed. In addition, non-Mendelian transmission of T1D susceptibility genes did not make a plausible explanation for the increase in T1D incidence in Finland. Instead, the Human Leucocyte Antigen associations with T1D were confirmed in the population-based analysis, which combines T1D registry information, reference sample of healthy subjects and birth cohort information of the Finnish population. Finally, a substantial familial variation in the susceptibility of T1D nephropathy was observed. The presented studies show the benefits of sophisticated statistical modelling to explore risk factors for complex diseases.
Resumo:
During the last decades there has been a global shift in forest management from a focus solely on timber management to ecosystem management that endorses all aspects of forest functions: ecological, economic and social. This has resulted in a shift in paradigm from sustained yield to sustained diversity of values, goods and benefits obtained at the same time, introducing new temporal and spatial scales into forest resource management. The purpose of the present dissertation was to develop methods that would enable spatial and temporal scales to be introduced into the storage, processing, access and utilization of forest resource data. The methods developed are based on a conceptual view of a forest as a hierarchically nested collection of objects that can have a dynamically changing set of attributes. The temporal aspect of the methods consists of lifetime management for the objects and their attributes and of a temporal succession linking the objects together. Development of the forest resource data processing method concentrated on the extensibility and configurability of the data content and model calculations, allowing for a diverse set of processing operations to be executed using the same framework. The contribution of this dissertation to the utilisation of multi-scale forest resource data lies in the development of a reference data generation method to support forest inventory methods in approaching single-tree resolution.
Resumo:
Sichuanissa Tiibetin ylängön metsäkato on pysähtynyt mutta eroosio-ongelmat jatkuvat Viikin tropiikki-instituutin tutkija Ping ZHOU kartoitti trooppisen metsänhoidon alaan kuuluvassa väitöskirjatyössään maaperän eroosioalttiutta ja sen riippuvuutta metsäkasvillisuudesta Jangtsen tärkeää sivuhaaraa Min-jokea ympäröivällä n. 7400 neliökilometrin suuruisella valuma-alueella Sichuanin Aba-piirikunnassa. Aineistonaan hän käytti muun muassa satelliittikartoitustietoja ja mittaustuloksia yli 600 maastokoealalta. Tutkimuksen nimi suomeksi on "Maaperän eroosion mallinnus ja vuoristoisen valuma-alueen ekologinen ennallistaminen Sichuanissa Kiinassa". Aikaisempien tutkimusten perusteella oli tiedossa että metsien häviäminen tällä alueella pysähtyi jo 1980-luvun alussa. Sen jälkeen on metsien pinta-ala hitaasti kasvanut etupäässä sen vuoksi, että teollinen puunhakkuu luonnonmetsissä kiellettiin kokonaan v. 1998 ja 25 astetta jyrkemmillä rinteillä myös maatalouden harjoittaminen on saatu lopetetuksi viljelijöille tarjottujen taloudellisten houkuttimien avulla. Täten myös pelto- ja laidunmaata on voitu ennallistaa metsäksi. Ping Zhou pystyi jakamaan 5700 metrin korkeuteen saakka kohoavan vuoristoalueen eroosioalttiudeltaan erilaisiin vyöhykkeisiin rinteen kaltevuuden, sademäärän, kasvipeitteen ja maalajin perusteella. Noin 15 prosentilla tutkitun valuma-alueen pinta-alasta, lähinnä Min-joen pääuomaa ympäröivillä jyrkillä rinteillä, eroosioriski oli suuri tai erittäin suuri. Eri tyyppisellä kasvillisuudella oli hyvin erilainen vaikutus eroosioalttiuteen, ja myös alueen sijainti vuoriston eri korkeuksilla vaikutti eroosioon. Säästyneet lähes luonnontilaiset havumetsät, joita on etupäässä vuoriston ylimmissä osissa 2600-4000 metrin korkeudella, edistävät tehokkaasti metsän luontaista uudistumista ja levittäytymistä vaurioituneille alueille. Säilyneiden metsien puulajikoostumus antoi tutkimuksessa mahdollisuuden ennustaa metsien tulevaa kehitystä koko tutkitulla valuma-alueella sen eri korkeusvyöhykkeissä ja eri maaperätyypeillä. Ennallistamisen kannalta ongelmallisimpia olivat alueet joilta metsäpeite oli lähinnä puiden teollisen hakkuun vuoksi kokonaan hävinnyt ja joilla maaperä yleisesti oli eroosion pahoin kuluttama. Näillä alueilla ei ole tehty juuri mitään uudistamis- tai ennallistamistoimenpiteitä. Niillä metsien ennallistaminen vaatii myös puiden tai pensaiden istuttamista. Tähän sopivia ovat erityisesti ilmakehän typpeä sitovat lajit, joista alueella kasvaa luontaisena mm. sama tyrnilaji joka esiintyy myös Suomessa. Työssä tutkittiin yli kahdeksankymmenen paikallisen luontaisen puulajin (joista peräti noin kolmannes on havupuulajeja) ekologisia ominaisuuksia ja soveltuvuutta metsien ennallistamiseen. Avainasemassa työn onnistumisen kannalta ovat nyt paikalliset asukkaat, joiden maankäytön muutokset ovat jo selvästi edistänet luonnonmetsän ennalleen palautumista. Suomen Akatemia rahoitti vuosina 2004-2006 VITRI:n tutkimushanketta, josta Ping Zhou'n väitöskirjatyö muodosti keskeisen osan. Kenttätyö Sichuanissa avasi mahdollisuuden hedelmälliseen monitieteiseen yhteistyöhön ja tutkijavaihtoon Kiinan tiedeakatemian alaisen Chengdun biologiainstituutin (CIB) kanssa; tämä tieteellinen kanssakäyminen jatkuu edelleen.
Resumo:
Soils represent a remarkable stock of carbon, and forest soils are estimated to hold half of the global stock of soil carbon. Topical concern about the effects of climate change and forest management on soil carbon as well as practical reporting requirements set by climate conventions have created a need to assess soil carbon stock changes reliably and transparently. The large spatial variability of soil carbon commensurate with relatively slow changes in stocks hinders the assessment of soil carbon stocks and their changes by direct measurements. Models therefore widely serve to estimate carbon stocks and stock changes in soils. This dissertation aimed to develop the soil carbon model YASSO for upland forest soils. The model was aimed to take into account the most important processes controlling the decomposition in soils, yet remain simple enough to ensure its practical applicability in different applications. The model structure and assumptions were presented and the model parameters were defined with empirical measurements. The model was evaluated by studying the sensitivities of the model results to parameter values, by estimating the precision of the results with an uncertainty analysis, and by assessing the accuracy of the model by comparing the predictions against measured data and to the results of an alternative model. The model was applied to study the effects of intensified biomass extraction on the forest carbon balance and to estimate the effects of soil carbon deficit on net greenhouse gas emissions of energy use of forest residues. The model was also applied in an inventory based method to assess the national scale forest carbon balance for Finland’s forests from 1922 to 2004. YASSO managed to describe sufficiently the effects of both the variable litter and climatic conditions on decomposition. When combined with the stand models or other systems providing litter information, the dynamic approach of the model proved to be powerful for estimating changes in soil carbon stocks on different scales. The climate dependency of the model, the effects of nitrogen on decomposition and forest growth as well as the effects of soil texture on soil carbon stock dynamics are areas for development when considering the applicability of the model to different research questions, different land use types and wider geographic regions. Intensified biomass extraction affects soil carbon stocks, and these changes in stocks should be taken into account when considering the net effects of forest residue utilisation as energy. On a national scale, soil carbon stocks play an important role in forest carbon balances.
Resumo:
The Taita Hills in southeastern Kenya form the northernmost part of Africa’s Eastern Arc Mountains, which have been identified by Conservation International as one of the top ten biodiversity hotspots on Earth. As with many areas of the developing world, over recent decades the Taita Hills have experienced significant population growth leading to associated major changes in land use and land cover (LULC), as well as escalating land degradation, particularly soil erosion. Multi-temporal medium resolution multispectral optical satellite data, such as imagery from the SPOT HRV, HRVIR, and HRG sensors, provides a valuable source of information for environmental monitoring and modelling at a landscape level at local and regional scales. However, utilization of multi-temporal SPOT data in quantitative remote sensing studies requires the removal of atmospheric effects and the derivation of surface reflectance factor. Furthermore, for areas of rugged terrain, such as the Taita Hills, topographic correction is necessary to derive comparable reflectance throughout a SPOT scene. Reliable monitoring of LULC change over time and modelling of land degradation and human population distribution and abundance are of crucial importance to sustainable development, natural resource management, biodiversity conservation, and understanding and mitigating climate change and its impacts. The main purpose of this thesis was to develop and validate enhanced processing of SPOT satellite imagery for use in environmental monitoring and modelling at a landscape level, in regions of the developing world with limited ancillary data availability. The Taita Hills formed the application study site, whilst the Helsinki metropolitan region was used as a control site for validation and assessment of the applied atmospheric correction techniques, where multiangular reflectance field measurements were taken and where horizontal visibility meteorological data concurrent with image acquisition were available. The proposed historical empirical line method (HELM) for absolute atmospheric correction was found to be the only applied technique that could derive surface reflectance factor within an RMSE of < 0.02 ps in the SPOT visible and near-infrared bands; an accuracy level identified as a benchmark for successful atmospheric correction. A multi-scale segmentation/object relationship modelling (MSS/ORM) approach was applied to map LULC in the Taita Hills from the multi-temporal SPOT imagery. This object-based procedure was shown to derive significant improvements over a uni-scale maximum-likelihood technique. The derived LULC data was used in combination with low cost GIS geospatial layers describing elevation, rainfall and soil type, to model degradation in the Taita Hills in the form of potential soil loss, utilizing the simple universal soil loss equation (USLE). Furthermore, human population distribution and abundance were modelled with satisfactory results using only SPOT and GIS derived data and non-Gaussian predictive modelling techniques. The SPOT derived LULC data was found to be unnecessary as a predictor because the first and second order image texture measurements had greater power to explain variation in dwelling unit occurrence and abundance. The ability of the procedures to be implemented locally in the developing world using low-cost or freely available data and software was considered. The techniques discussed in this thesis are considered equally applicable to other medium- and high-resolution optical satellite imagery, as well the utilized SPOT data.
Resumo:
Large-scale chromosome rearrangements such as copy number variants (CNVs) and inversions encompass a considerable proportion of the genetic variation between human individuals. In a number of cases, they have been closely linked with various inheritable diseases. Single-nucleotide polymorphisms (SNPs) are another large part of the genetic variance between individuals. They are also typically abundant and their measuring is straightforward and cheap. This thesis presents computational means of using SNPs to detect the presence of inversions and deletions, a particular variety of CNVs. Technically, the inversion-detection algorithm detects the suppressed recombination rate between inverted and non-inverted haplotype populations whereas the deletion-detection algorithm uses the EM-algorithm to estimate the haplotype frequencies of a window with and without a deletion haplotype. As a contribution to population biology, a coalescent simulator for simulating inversion polymorphisms has been developed. Coalescent simulation is a backward-in-time method of modelling population ancestry. Technically, the simulator also models multiple crossovers by using the Counting model as the chiasma interference model. Finally, this thesis includes an experimental section. The aforementioned methods were tested on synthetic data to evaluate their power and specificity. They were also applied to the HapMap Phase II and Phase III data sets, yielding a number of candidates for previously unknown inversions, deletions and also correctly detecting known such rearrangements.
Resumo:
Population dynamics are generally viewed as the result of intrinsic (purely density dependent) and extrinsic (environmental) processes. Both components, and potential interactions between those two, have to be modelled in order to understand and predict dynamics of natural populations; a topic that is of great importance in population management and conservation. This thesis focuses on modelling environmental effects in population dynamics and how effects of potentially relevant environmental variables can be statistically identified and quantified from time series data. Chapter I presents some useful models of multiplicative environmental effects for unstructured density dependent populations. The presented models can be written as standard multiple regression models that are easy to fit to data. Chapters II IV constitute empirical studies that statistically model environmental effects on population dynamics of several migratory bird species with different life history characteristics and migration strategies. In Chapter II, spruce cone crops are found to have a strong positive effect on the population growth of the great spotted woodpecker (Dendrocopos major), while cone crops of pine another important food resource for the species do not effectively explain population growth. The study compares rate- and ratio-dependent effects of cone availability, using state-space models that distinguish between process and observation error in the time series data. Chapter III shows how drought, in combination with settling behaviour during migration, produces asymmetric spatially synchronous patterns of population dynamics in North American ducks (genus Anas). Chapter IV investigates the dynamics of a Finnish population of skylark (Alauda arvensis), and point out effects of rainfall and habitat quality on population growth. Because the skylark time series and some of the environmental variables included show strong positive autocorrelation, the statistical significances are calculated using a Monte Carlo method, where random autocorrelated time series are generated. Chapter V is a simulation-based study, showing that ignoring observation error in analyses of population time series data can bias the estimated effects and measures of uncertainty, if the environmental variables are autocorrelated. It is concluded that the use of state-space models is an effective way to reach more accurate results. In summary, there are several biological assumptions and methodological issues that can affect the inferential outcome when estimating environmental effects from time series data, and that therefore need special attention. The functional form of the environmental effects and potential interactions between environment and population density are important to deal with. Other issues that should be considered are assumptions about density dependent regulation, modelling potential observation error, and when needed, accounting for spatial and/or temporal autocorrelation.
Resumo:
Farmland bird species have been declining in Europe. Many declines have coincided with general intensification of farming practices. In Finland, replacement of mixed farming, including rotational pastures, with specialized cultivation has been one of the most drastic changes from the 1960s to the 1990s. This kind of habitat deterioration limits the persistence of populations, as has been previously indicated from local populations. Integrated population monitoring, which gathers species-specific information of population size and demography, can be used to assess the response of a population to environment changes also at a large spatial scale. I targeted my analysis at the Finnish starling (Sturnus vulgaris). Starlings are common breeders in farmland habitats, but severe declines of local populations have been reported from Finland in the 1970s and 1980s and later from other parts of Europe. Habitat deterioration (replacement of pasture and grassland habitats with specialized cultivation areas) limits reproductive success of the species. I analysed regional population data in order to exemplify the importance of agricultural change to bird population dynamics. I used nestling ringing and nest-card data from 1951 to 2005 in order to quantify population trends and per capita reproductive success within several geographical regions (south/north and west/east aspects). I used matrix modelling, acknowledging age-specific survival and fecundity parameters and density-dependence, to model population dynamics. Finnish starlings declined by 80% from the end of the 1960s up to the end of the 1980s. The observed patterns and the model indicated that the population decline was due to the decline of the carrying capacity of farmland habitats. The decline was most severe in north Finland where populations largely become extinct. However, habitat deterioration was most severe in the southern breeding areas. The deteriorations in habitat quality decreased reproduction, which finally caused the decline. I suggest that poorly-productive northern populations have been partly maintained by immigration from the highly-productive southern populations. As the southern populations declined, ceasing emigration caused the population extinction in north. This phenomenon was explained with source sink population dynamics, which I structured and verified on the basis of a spatially explicit simulation model. I found that southern Finnish starling population exhibits ten-year cyclic regularity, a phenomenon that can be explained with delayed density-dependence in reproduction.
Resumo:
Man-induced climate change has raised the need to predict the future climate and its feedback to vegetation. These are studied with global climate models; to ensure the reliability of these predictions, it is important to have a biosphere description that is based upon the latest scientific knowledge. This work concentrates on the modelling of the CO2 exchange of the boreal coniferous forest, studying also the factors controlling its growing season and how these can be used in modelling. In addition, the modelling of CO2 gas exchange at several scales was studied. A canopy-level CO2 gas exchange model was developed based on the biochemical photosynthesis model. This model was first parameterized using CO2 exchange data obtained by eddy covariance (EC) measurements from a Scots pine forest at Sodankylä. The results were compared with a semi-empirical model that was also parameterized using EC measurements. Both of the models gave satisfactory results. The biochemical canopy-level model was further parameterized at three other coniferous forest sites located in Finland and Sweden. At all the sites, the two most important biochemical model parameters showed seasonal behaviour, i.e., their temperature responses changed according to the season. Modelling results were improved when these changeover dates were related to temperature indices. During summer-time the values of the biochemical model parameters were similar at all the four sites. Different control factors for CO2 gas exchange were studied at the four coniferous forests, including how well these factors can be used to predict the initiation and cessation of the CO2 uptake. Temperature indices, atmospheric CO2 concentration, surface albedo and chlorophyll fluorescence (CF) were all found to be useful and have predictive power. In addition, a detailed simulation study of leaf stomata in order to separate physical and biochemical processes was performed. The simulation study brought to light the relative contribution and importance of the physical transport processes. The results of this work can be used in improving CO2 gas exchange models in boreal coniferous forests. The meteorological and biological variables that represent the seasonal cycle were studied, and a method for incorporating this cycle into a biochemical canopy-level model was introduced.
Resumo:
Changes in alcohol pricing have been documented as inversely associated with changes in consumption and alcohol-related problems. Evidence of the association between price changes and health problems is nevertheless patchy and is based to a large extent on cross-sectional state-level data, or time series of such cross-sectional analyses. Natural experimental studies have been called for. There was a substantial reduction in the price of alcohol in Finland in 2004 due to a reduction in alcohol taxes of one third, on average, and the abolition of duty-free allowances for travellers from the EU. These changes in the Finnish alcohol policy could be considered a natural experiment, which offered a good opportunity to study what happens with regard to alcohol-related problems when prices go down. The present study investigated the effects of this reduction in alcohol prices on (1) alcohol-related and all-cause mortality, and mortality due to cardiovascular diseases, (2) alcohol-related morbidity in terms of hospitalisation, (3) socioeconomic differentials in alcohol-related mortality, and (4) small-area differences in interpersonal violence in the Helsinki Metropolitan area. Differential trends in alcohol-related mortality prior to the price reduction were also analysed. A variety of population-based register data was used in the study. Time-series intervention analysis modelling was applied to monthly aggregations of deaths and hospitalisation for the period 1996-2006. These and other mortality analyses were carried out for men and women aged 15 years and over. Socioeconomic differentials in alcohol-related mortality were assessed on a before/after basis, mortality being followed up in 2001-2003 (before the price reduction) and 2004-2005 (after). Alcohol-related mortality was defined in all the studies on mortality on the basis of information on both underlying and contributory causes of death. Hospitalisation related to alcohol meant that there was a reference to alcohol in the primary diagnosis. Data on interpersonal violence was gathered from 86 administrative small-areas in the Helsinki Metropolitan area and was also assessed on a before/after basis followed up in 2002-2003 and 2004-2005. The statistical methods employed to analyse these data sets included time-series analysis, and Poisson and linear regression. The results of the study indicate that alcohol-related deaths increased substantially among men aged 40-69 years and among women aged 50-69 after the price reduction when trends and seasonal variation were taken into account. The increase was mainly attributable to chronic causes, particularly liver diseases. Mortality due to cardiovascular diseases and all-cause mortality, on the other hand, decreased considerably among the-over-69-year-olds. The increase in alcohol-related mortality in absolute terms among the 30-59-year-olds was largest among the unemployed and early-age pensioners, and those with a low level of education, social class or income. The relative differences in change between the education and social class subgroups were small. The employed and those under the age of 35 did not suffer from increased alcohol-related mortality in the two years following the price reduction. The gap between the age and education groups, which was substantial in the 1980s, thus further broadened. With regard to alcohol-related hospitalisation, there was an increase in both chronic and acute causes among men under the age of 70, and among women in the 50-69-year age group when trends and seasonal variation were taken into account. Alcohol dependence and other alcohol-related mental and behavioural disorders were the largest category in both the total number of chronic hospitalisation and in the increase. There was no increase in the rate of interpersonal violence in the Helsinki Metropolitan area, and even a decrease in domestic violence. There was a significant relationship between the measures of social disadvantage on the area level and interpersonal violence, although the differences in the effects of the price reduction between the different areas were small. The findings of the present study suggest that that a reduction in alcohol prices may lead to a substantial increase in alcohol-related mortality and morbidity. However, large population group differences were observed regarding responsiveness to the price changes. In particular, the less privileged, such as the unemployed, were most sensitive. In contrast, at least in the Finnish context, the younger generations and the employed do not appear to be adversely affected, and those in the older age groups may even benefit from cheaper alcohol in terms of decreased rates of CVD mortality. The results also suggest that reductions in alcohol prices do not necessarily affect interpersonal violence. The population group differences in the effects of the price changes on alcohol-related harm should be acknowledged, and therefore the policy actions should focus on the population subgroups that are primarily responsive to the price reduction.
Resumo:
A key trait of Free and Open Source Software (FOSS) development is its distributed nature. Nevertheless, two project-level operations, the fork and the merge of program code, are among the least well understood events in the lifespan of a FOSS project. Some projects have explicitly adopted these operations as the primary means of concurrent development. In this study, we examine the effect of highly distributed software development, is found in the Linux kernel project, on collection and modelling of software development data. We find that distributed development calls for sophisticated temporal modelling techniques where several versions of the source code tree can exist at once. Attention must be turned towards the methods of quality assurance and peer review that projects employ to manage these parallel source trees. Our analysis indicates that two new metrics, fork rate and merge rate, could be useful for determining the role of distributed version control systems in FOSS projects. The study presents a preliminary data set consisting of version control and mailing list data.