65 resultados para Microbial genetics
em Helda - Digital Repository of University of Helsinki
Resumo:
Microbes in natural and artificial environments as well as in the human body are a key part of the functional properties of these complex systems. The presence or absence of certain microbial taxa is a correlate of functional status like risk of disease or course of metabolic processes of a microbial community. As microbes are highly diverse and mostly notcultivable, molecular markers like gene sequences are a potential basis for detection and identification of key types. The goal of this thesis was to study molecular methods for identification of microbial DNA in order to develop a tool for analysis of environmental and clinical DNA samples. Particular emphasis was placed on specificity of detection which is a major challenge when analyzing complex microbial communities. The approach taken in this study was the application and optimization of enzymatic ligation of DNA probes coupled with microarray read-out for high-throughput microbial profiling. The results show that fungal phylotypes and human papillomavirus genotypes could be accurately identified from pools of PCR amplicons generated from purified sample DNA. Approximately 1 ng/μl of sample DNA was needed for representative PCR amplification as measured by comparisons between clone sequencing and microarray. A minimum of 0,25 amol/μl of PCR amplicons was detectable from amongst 5 ng/μl of background DNA, suggesting that the detection limit of the test comprising of ligation reaction followed by microarray read-out was approximately 0,04%. Detection from sample DNA directly was shown to be feasible with probes forming a circular molecule upon ligation followed by PCR amplification of the probe. In this approach, the minimum detectable relative amount of target genome was found to be 1% of all genomes in the sample as estimated from 454 deep sequencing results. Signal-to-noise of contact printed microarrays could be improved by using an internal microarray hybridization control oligonucleotide probe together with a computational algorithm. The algorithm was based on identification of a bias in the microarray data and correction of the bias as shown by simulated and real data. The results further suggest semiquantitative detection to be possible by ligation detection, allowing estimation of target abundance in a sample. However, in practise, comprehensive sequence information of full length rRNA genes is needed to support probe design with complex samples. This study shows that DNA microarray has the potential for an accurate microbial diagnostic platform to take advantage of increasing sequence data and to replace traditional, less efficient methods that still dominate routine testing in laboratories. The data suggests that ligation reaction based microarray assay can be optimized to a degree that allows good signal-tonoise and semiquantitative detection.
Resumo:
Depression is a complex psychiatric disorder influenced by several genes, environmental factors, and their interplay. Serotonin receptor 2A (HTR2A) and tryptophan hydroxylase 1 (TPH1) genes have been implicated in vulnerability to depression and other psychiatric disorders, but the results have been inconsistent. The present study examined whether these two genes moderated the influence of different depressogenic environmental factors on subthreshold depressive symptoms (assessed on a modified version of Beck s Depression Inventory, BDI) and depression-related temperament, i.e., harm avoidance (assessed on the Temperament and Character Inventory, TCI). The environmental factors included measures of childhood and adolescence exposure, i.e., maternal nurturance and parental socioeconomic status, and adulthood social circumstances, i.e., perceived social support and urban/rural residence. The participants were two randomly selected subsamples (n = 1246, n = 341) from the longitudinal population-based Cardiovascular Risk in Young Finns study (n = 3596). Childhood environmental factors were assessed when the participants were 3 to 18 years of age, and three years after the baseline. Adulthood environmental factors and outcome measures were assessed 17 and 21 years later when the participants were 21 to 39 years of age. The T102C polymorphism of the HTR2A gene moderated the association between childhood maternal nurturance and adulthood depressive symptoms, such that exposure to high maternal nurturance predicted low depressive symptoms among individuals carrying the T/T or T/C genotypes, but not among those carrying the C/C genotype. Likewise, high parental SES predicted low adulthood harm avoidance in individuals carrying the T/T or T/C genotype, but not in C/C-genotype carriers. Individuals carrying the T/T or T/C genotype were also sensitive to urban/rural residence, such that they had lower depressive symptoms in urban than in rural areas, whereas those carrying the C/C genotype were not sensitive to urban/rural residence difference. HTR2A did not moderate the influence of social support. TheA779C/A218C haplotype of the TPH1 gene was not involved in the association between childhood environment and adulthood outcomes. However, individuals carrying A alleles of the TPH1 haplotype were more vulnerable to the lack of adulthood social support in terms of high depressive symptoms than their counterparts carrying no A alleles. Furthermore, individuals living in remote rural areas and carrying the A/A haplotype had higher depressive symptoms than those carrying other genotypes of the TPH1. The findings suggest that the HTR2A and TPH1 genes may be involved in the development of depression by influencing individual s sensitivity to depressogenic environmental influences.
Resumo:
Autoimmune diseases affect 5 % of the population and come in many forms, such as diabetes, rheumatoid arthritis and MS. However, how and why autoimmune diseases arise are not yet fully resolved. In this thesis, the onset of autoimmunity was investigated using both patient samples and a mouse model of autoimmunity. Autoimmune diseases are usually complex, due to a number of different causative genes and environmental factors. However, a few monogenic autoimmune diseases have been described, which are caused by mutations in only one gene per disease. One of such disease is called APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) and is enriched in the Finnish population. The causative gene behind APECED is named AIRE from AutoImmune REgulator. How malfunction of just one gene product can cause the multitude of disease components found in APECED is not yet resolved. This thesis sought out to find out more about the functions of AIRE, in order to reveal why APECED and other autoimmune diseases arise and what goes wrong? Usually, immune cells are taught to distinguish between self and non-self during their development. That way, immune cells can fight off bacteria and microbes while leaving the tissues and organs of the host organism itself unharmed. In APECED, the development of immune cells called αβ T cells is incomplete. The cells are not able to fully distinguish between self and non-self. This leads to autodestruction of self tissues and autoimmune disease. One of the achievements of this thesis was the finding that the development of another set of T cells called γδ T cells is not affected by AIRE in mice or in men. Instead, we found that another type of immune cell important in tolerance, called the dendritic cell is defective in APECED patients and is not able to respond to microbial stimulus in a normal fashion. Finally, we studied Aire-deficient mice and found that autoantibodies expressed in the mice were not targeted against the same molecules as those found in APECED patients. This indicates differences in the autoimmune pathology in mice and men. More work is still required before we understand the mechanisms of tolerance and autoimmunity well enough to be able to cure APECED, let alone the more complex autoimmune diseases. Yet altogether, the findings of this thesis work bring us one step closer to finding out why and how APECED and common autoimmune diseases arise.
Resumo:
The major aim of this thesis was to examine the origins and distribution of uniparental and autosomal genetic variation among the Finno-Ugric-speaking human populations living in Boreal and Arctic regions of North Eurasia. In more detail, I aimed to disentangle the underlying molecular and population genetic factors which have produced the patterns of uniparental and autosomal genetic diversity in these populations. Among Finno-Ugrics the genetic amalgamation and clinal distribution of West and East Eurasian gene pools were observed within uniparental markers. This admixture indicates that North Eurasia was colonized through Central Asia/ South Siberia by human groups already carrying both West and East Eurasian lineages. The complex combination of founder effects, gene flow and genetic drift underlying the genetic diversity of the Finno-Ugric- speaking populations were emphasized by low haplotype diversity within and among uniparental and biparental markers. A high prevalence of lactase persistence allele among the North Eurasian Finno- Ugric agriculturalist populations was also shown indicating a local adaptation to subsistence change with lactose rich diet. Moreover, the haplotype background of lactase persistence allele among the Finno- Ugric-speakers strongly suggested that the lactase persistence T-13910 mutation was introduced independently more than once to the North Eurasian gene pool. A significant difference in genetic diversity, haplotype structure and LD distribution within the cytochrome P450 CYP2C and CYP2D regions revealed the unique gene pool of the Finno-Ugric Saami created mainly by population genetic processes compared to other Europeans and sub-Saharan Mandenka population. From all studied populations the Saami showed also significantly the highest allele frequency of a CYP2C19 gene mutation causing variable drug reactions. The diversity patterns observed within CYP2C and CYP2D regions emphasize the strong effect of demographic history shaping genetic diversity and LD especially among such small and constant size populations as the Finno-Ugric-speaking Saami. Moreover, the increased LD in Saami due to genetic drift and/or admixture was shown to offer an advantage for further attempts to identify alleles associated to common complex pharmacogenetic traits.
Resumo:
Congenital lactase deficiency (CLD) (MIM 223000) is a rare autosomal recessive gastrointestinal disorder characterized by watery diarrhea in infants fed with breast milk or other lactose-containing formulas. The CLD locus was previously assigned by linkage and linkage disequilibrium analyses on 2q21 in 19 Finnish families. In this study, the molecular background of this disorder is reported. The CLD locus was refined in 32 CLD patients in 24 families by using microsatellite and single nucleotide polymorphism (SNP) haplotypes. Mutation analyses were performed by direct sequencing. We identified 5 distinct mutations in the lactase (LCT) gene, encoding the enzyme that hydrolyzes lactose in the intestinal lumen. These findings facilitate genetic testing of CLD in clinical practice and enable genetic counseling. The present data also provide the basis for detailed characterization of the molecular pathogenesis of this disorder. Adult-type hypolactasia (MIM 223100) (lactase non-persistence, lactose intolerance) is an autosomal recessive gastrointestinal condition that is a result of a decline in the activity of lactase in the intestinal lumen after weaning. Adult-type hypolactasia is considered to be a normal phenomenon among mammals and symptoms are remarkably milder than experienced in CLD. Recently, a variant C/T-13910 was shown to associate with the adult-type hypolactasia trait, locating 13.9 kb upstream of the LCT gene. In this study, the functional significance of the C/T-13910 variant was determined by studying the LCT mRNA levels in intestinal biopsy samples in children and adults with different genotypes. RT-PCR followed by solid-phase minisequencing was applied to determine the relative expression levels of the LCT alleles using an informative SNP located in exon 1. In children, the C-13910 allele was observed to be downregulated after five years of age in parallel with lactase enzyme activity. The expression of the LCT mRNA in the intestinal mucosa in individuals with the T-13910 A-22018 alleles was 11.5 times higher than that found in individuals with the C-13910, G-22018 alleles. These findings suggest that the C/T-13910 associated with adult-type hypolactasia is associated with the transcriptional regulation of the LCT gene. The presence of the T-13910 A-22018 allele also showed significant elevation lactase activity. Galactose, the hydrolysing product of the milk sugar lactose, has been hypothesized to be poisonous to ovarian epithelial cells. Hence, consumption of dairy products and lactase persistence has been proposed to be a risk factor for ovarian carcinoma. To investigate whether lactase persistence is related to the risk of ovarian carcinoma the C/T-13910 genotype was determined in a cohort of 782 women with ovarian carcinoma 1331 individuals serving as controls. Lactase persistence did not associate significantly with the risk for ovarian carcinoma in the Finnish, in the Polish or in the Swedish populations. The findings do not support the hypothesis that lactase persistence increases the risk for ovarian carcinoma.
Resumo:
Schizophrenia, affecting about 1% of population worldwide, is a severe mental disorder characterized by positive and negative symptoms, such as psychosis and anhedonia, as well as cognitive deficits. At present, schizophrenia is considered a complex disorder of neurodevelopmental origin with both genetic and environmental factors contributing to its onset. Although a number of candidate genes for schizophrenia have been highlighted, only very few schizophrenia patients are likely to share identical genetic liability. This study is based on the nation-wide schizophrenia family sample of the National Institute for Health and Welfare, and represents one of the largest and most well-characterized familial series in the world. In the first part of this study, we investigated the roles of the DTNBP1, NRG1, and AKT1 genes in the background of schizophrenia in Finland. Although these genes are associated with schizophrenia liability in several populations, any significant association with clinical diagnostic information of schizophrenia remained absent in our sample of 441 schizophrenia families. In the second part of this study, we first replicated schizophrenia linkage on the long arm of chromosome 7 in 352 schizophrenia families. In the following association analysis, we utilized additional clinical disorder features and intermediate phenotypes – endophenotypes - in addition to diagnostic information from altogether 290 neuropsychologically assessed schizophrenia families. An intragenic short tandem repeat allele of the regional RELN gene, supposed to play a role in the background of several neurodevelopmental disorders, showed significant association with poorer cognitive functioning and more severe schizophrenia symptoms. Additionally, this risk allele was significantly more prevalent among the individuals affected with schizophrenia spectrum disorders. We have previously identified linkage of schizophrenia and its cognitive endophenotypes on the long arms of chromosomes 2, 4, and 5. In the last part of this study, we selected altogether 104 functionally relevant candidate genes from the linked regions. We detected several promising associations, of which especially interesting are the ERBB4 gene, showing association with the severity of schizophrenia symptoms and impairments in traits related to verbal abilities, and the GRIA1 gene, showing association with the severity of schizophrenia symptoms. Our results extend the previous evidence that the genetic risk for schizophrenia is at least partially mediated via the effects of the candidate genes and their combinations on relevant brain systems, resulting in alterations in different disorder domains, such as the cognitive deficits.
Resumo:
Celiac disease, or gluten intolerance, is triggered by dietary glutens in genetically susceptible individuals and it affects approximately 1% of the Caucasian population. The best known genetic risk factors for celiac disease are HLA DQ2 and DQ8 heterodimers, which are necessary for the development of the disease. However, they alone are not sufficient for disease induction, other risk factors are required. This thesis investigated genetic factors for celiac disease, concentrating on susceptibility loci on chromosomes 5q31-q33, 19p13 and 2q12 previously reported in genome-wide linkage and association studies. In addition, a novel genotyping method for the detection of HLA DQ2 and DQ8 coding haplotypes was validated. This study was conducted using Finnish and Hungarian family materials, and Finnish, Hungarian and Italian case-control materials. Genetic linkage and association were analysed in these materials using candidate gene and fine-mapping approaches. The results confirmed linkage to celiac disease on the chromosomal regions 5q31-q33 and 19p13. Fine-mapping on chromosome 5q31-q33 revealed several modest associations in the region, and highlighted the need for further investigations to locate the causal risk variants. The MYO9B gene on chromosome 19p13 showed evidence for linkage and association particularly with dermatitis herpetiformis, the skin manifestation of celiac disease. This implies a potential difference in the genetic background of the intestinal and skin forms of the disease, although studies on larger samplesets are required. The IL18RAP locus on chromosome 2q12, shown to be associated with celiac disease in a previous genome-wide association study and a subsequent follow-up, showed association in the Hungarian population in this study. The expression of IL18RAP was further investigated in small intestinal tissue and in peripheral blood mononuclear cells. The results showed that IL18RAP is expressed in the relevant tissues. Two putative isoforms of IL18RAP were detected by Western blot analysis, and the results suggested that the ratios and total levels of these isoforms may contribute to the aetiology of celiac disease. A novel genotyping method for celiac disease-associated HLA haplotypes was also validated in this thesis. The method utilises single-nucleotide polymorphisms tagging these HLA haplotypes with high sensitivity and specificity. Our results suggest that this method is transferable between populations, and it is suitable for large-scale analysis. In conclusion, this doctorate study provides an insight into the roles of the 5q31-q33, MYO9B, IL18RAP and HLA loci in the susceptibility to celiac disease in the Finnish, Hungarian and Italian populations, highlighting the need for further studies at these genetic loci and examination of the function of the candidate genes.