9 resultados para Marine animals
em Helda - Digital Repository of University of Helsinki
Resumo:
Muscle glycogen exists in two forms: low molecular weight pro-glycogen and high molecular weight macro-glycogen. The degradation of glycogen to glucose 1 phosphate and free glucose is catalysed by glycogen phosphorylase together with glycogen debranching enzyme (GDE). The process in which glycogen is broken down via anaerobic pathways to lactate, results in the acidification of the muscles and has a great influence on meat quality. Thus, the overall aim of this thesis was to characterise the post mortem action of GDE in muscles of meat production animals (pigs, cattle and chickens). Interest was focused on the differences in GDE activity between fast twitch glycolytic muscles and slow twitch oxidative muscles. The effects of pH, temperature, RN genotype (PRKAG3 gene), and of time post mortem on GDE activity were also investigated. This thesis showed that there are differences in GDE activity between animal species and between different muscles of an animal. It was shown that in pigs and cattle, higher GDE activity and phosphorylase activity exists in the fast twitch glycolytic muscles than in slow twitch oxidative muscles of the same animal. Thus, the high activity of these enzymes enables a faster rate of glycogenolysis in glycolytic M. longissimus dorsi compared to oxidative M. masseter. In chicken muscles, the GDE activity was low compared to pig or cattle muscles. Furthermore, the GDE activity in the glycolytic M. pectoralis superficialis was lower than in more oxidative M. quadriceps femoris despite the high phosphorylase activity in the former. The relative ratios between phosphorylase and GDE activity were higher in fast twitch glycolytic muscles than in slow twitch oxidative muscles of all studied animals. This suggests that the relatively low GDE activity compared to the phosphorylase activity in fast twitch glycolytic muscles may be a protection mechanism in living muscle against a very fast pH decrease. Chilling significantly decreased GDE activity and below 15 C porcine GDE was almost inactive. The effect of pH on GDE activity was only minor at the range normally found in post mortem muscles (pH 7.4 to 5.0). The GDE activity remained level for several hours after slaughter. During the first hours post mortem, GDE activity was similar in RN- carrier pigs and in wild type pigs. However, the GDE activity declined faster in M. longissimus dorsi from wild type pigs than in the RN carrier pigs, the difference between genotypes was significant after 24 h post mortem. Pro-glycogen and macro-glycogen contents were higher, pH decrease was faster and ultimate pH was lower in RN- carrier pigs than in wild type pigs. In the RN- carriers, the prolonged high GDE activity level may enable an extended pH decrease and lower ultimate pH in their muscles. In conclusion, GDE is not the main factor determining the rate or the extent of post mortem glycogenolysis, but under certain conditions, such as in very fast chilling, the inhibition of GDE activity in meat may reduce the rate of pH decrease and result in higher ultimate pH. The rate and extent of pH decrease affects several meat quality traits.
Resumo:
Predation is an important source of mortality for most aquatic animals. Thus, the ability to avoid being eaten brings substantial fitness benefits to individuals. Predator detection abilities and antipredator behaviour were examined in various planktivores, i.e. the littoral mysids Neomysis integer and Praunus flexuosus, three-spined stickleback Gasterosteus aculeatus larvae, pelagic mysids Mysis mixta and M. relicta, and the predatory cladoceran Cercopagis pengoi, with cues from their respective predators European perch Perca fluviatilis and Baltic herring Clupea harengus membras. The use of different aquatic macrophytes as predation refuges by the littoral planktivores was also examined. All pelagic planktivores and stickleback larvae were able to detect the presence of their predator by chemical cues alone. The littoral mysids N. integer and P. flexuosus responded only when chemical and visual predator cues were combined. The responses of stickleback larvae were stronger to the combined cues than the chemical cue alone. A common antipredator behaviour in all of the planktivores studied was decreased ingestion rate in response to predator cues. N. integer and stickleback larvae also decreased their swimming activity. Pelagic mysids and C. pengoi altered their prey selectivity patterns in response to predator cues. The effects of predator cues on the swarming behaviour of N. integer were examined. Swarming brings clear antipredator advantages to N. integer, since when they feed in a swarm, they do not significantly decrease their feeding rate. However, the swarming behaviour of N. integer was not affected by predation risk, but was instead a fixed strategy. Despite the presence or absence of predator cues, N. integer individuals attempted to associate with a swarm and preferred larger to smaller swarms. In studies with aquatic macrophytes, stickleback larvae and P. flexuosus utilized vegetation as a predation refuge, spending more time within vegetation when under predation threat. The two macroalgal species studied, bladderwrack Fucus vesiculosus and stonewort Chara tomentosa, were preferred by P. flexuosus, whereas Eurasian watermilfoil Myriophyllum spicatum was strongly avoided by N. integer and stickleback larvae. In fact, when in dense patches in aquaria, M. spicatum caused acute and high mortality (> 70%) in littoral mysids, but not in sticklebacks, whereas C. tomentosa and northern watermilfoil M. sibiricum did not. In contrast, only 2-4% mortality in N. integer was observed with intact and broken stems of M. spicatum in field experiments. The distribution of littoral mysids in different vegetations, however, suggests that N. integer avoids areas vegetated by M. spicatum.
Resumo:
Eutrophication and enhanced internal nutrient loading of the Baltic Sea are most clearly reflected by increased late-summer cyanobacterial blooms, which often are toxic. In addition to their toxicity to animals, phytoplankton species can be allelopathic, which means that they produce chemicals that inhibit competing phytoplankton species. Such interspecific chemical warfare may lead to the formation of harmful phytoplankton blooms and the spread of exotic species into new habitats. This is the first report on allelopathic effects in brackish-water cyanobacteria. The experimental studies presented in this thesis showed that the filamentous cyanobacteria Anabaena sp., Aphanizomenon flos-aquae and Nodularia spumigena are capable of decreasing the growth of other phytoplankton species, especially cryptophytes, but also diatoms. The detected allelopathic effects are rather transitory, and some co-occurring species show tolerance to them. The allelochemicals are excreted during active growth and they decrease cell numbers, chlorophyll a content and carbon uptake of the target species. Although the more specific modes of action or chemical structures of the allelochemicals remain to be studied, the results clearly indicate that the allelopathic effects are not caused by the hepatotoxin, nodularin. On the other hand, cyanobacteria stimulated the growth of bacteria, other cyanobacteria, chlorophytes and flagellates in a natural phytoplankton community. In a long-term data analysis of phytoplankton abundances and hydrography of the northern Baltic Sea, a clear change was observed in phytoplankton community structure, together with a transition in environmental factors, between the late 1970s and early 2000s. Surface water salinity decreased, whereas water temperature and the concentration of dissolved inorganic nitrogen increased. In the phytoplankton community, the biomass of cyanobacteria, chrysophytes and chlorophytes significantly increased, and the late-summer phytoplankton community became increasingly cyanobacteria-dominated. In contrast, the biomass of cryptophytes decreased. The increased temperature and nutrient concentrations probably explain most of the changes in phytoplankton, but my results suggest that the possible effect of chemically mediated biological interactions should also be considered. Cyanobacterial allelochemicals can cause additional stress to other phytoplankton in the nutrient-depleted late-summer environment and thus contribute to the formation and persistence of long-lasting cyanobacterial mass occurrences. On the other hand, cyanobacterial blooms may either directly or indirectly promote the growth of some phytoplankton species. Therefore, a further increase in cyanobacteria will probably shape the late-summer pelagic phytoplankton community by stimulating some species, but inhibiting others.
Resumo:
Eutrophication favours harmful algal blooms worldwide. The blooms cause toxic outbreaks and deteriorated recreational and aesthetic values, causing both economic loss and illness or death of humans and animals. The Baltic Sea is the world s only large brackish water habitat with recurrent blooms of toxic cyanobacteria capable of biological fixation of atmospheric nitrogen gas. Phosphorus is assumed to be the main limiting factor, along with temperature and light, for the growth of these cyanobacteria. This thesis evaluated the role of phosphorus nutrition as a regulating factor for the occurrence of nitrogen-fixing cyanobacteria blooms in the Baltic Sea, utilising experimental laboratory and field studies and surveys on varying spatial scales. Cellular phosphorus sources were found to be able to support substantial growth of the two main bloom forming species Aphanizomenon sp. and Nodularia spumigena. However, N. spumigena growth seemed independent of phosphorus source, whereas, Aphanizomenon sp. grew best in a phosphate enriched environment. Apparent discrepancies with field observations and experiments are explained by the typical seasonal temperature dependent development of Aphanizomenon sp. and N. spumigena biomass allowing the two species to store ambient pre-bloom excess phosphorus in different ways. Field experiments revealed natural cyanobacteria bloom communities to be predominantly phosphorus deficient during blooms. Phosphate additions were found to increase the accumulation of phosphorus relatively most in the planktonic size fraction dominated by the nitrogen-fixing cyanobacteria. Aphanizomenon sp. responded to phosphate additions whereas the phosphorus nutritive status of N. spumigena seemed independent of phosphate addition. The seasonal development of phosphorus deficiency is different for the two species with N. spumigena showing indications of phosphorus deficiency during a longer time period in the open sea. Coastal upwelling introduces phosphorus to the surface layer during nutrient deficient conditions in summer. The species-specific ability of Aphanizomenon sp. and N. spumigena to utilise phosphate enrichment of the surface layer caused by coastal upwelling was clarified. Typical bloom time vertical distributions of biomass maxima were found to render N. spumigena more susceptible to advection by surface currents caused by coastal upwellings. Aphanizomenon sp. populations residing in the seasonal thermocline were observed to be able to utilise the phosphate enrichment and a bloom was produced with a two to three week time lag subsequent to the relaxation of upwelling. Consistent high concentrations of dissolved inorganic phosphorus, caused by persistent internal loading of phosphorus, was found to be the main source of phosphorus for large-scale pelagic blooms. External loads were estimated to contribute with only a fraction of available phosphorus for open sea blooms. Remineralization of organic forms of phosphorus along with vertical mixing to the permanent halocline during winter set the level of available phosphorus for the next growth season. Events such as upwelling are important in replenishing phosphate concentrations during the nutrient deplete growth season. Autecological characteristics of the two main bloom forming species favour Aphanizomenon sp. populations in utilising the abundant excess phosphate concentrations and phosphate pulses mediated through upwelling. Whilst, N. spumigena displays predominant phosphorus limited growth mode and relies on more scarce cellular phosphorus stores and presumably dissolved organic phosphorus compounds for growth. The Baltic Sea is hypothesised to be in an inhibited state of recovery due to the extensive historical external nutrient loading, extensive internal phosphorus loading and the substantial nitrogen load caused by cyanobacteria nitrogen fixation. This state of the sea is characterised as a vicious circle .
Resumo:
Brain size and architecture exhibit great evolutionary and ontogenetic variation. Yet, studies on population variation (within a single species) in brain size and architecture, or in brain plasticity induced by ecologically relevant biotic factors have been largely overlooked. Here, I address the following questions: (i) do locally adapted populations differ in brain size and architecture, (ii) can the biotic environment induce brain plasticity, and (iii) do locally adapted populations differ in levels of brain plasticity? In the first two chapters I report large variation in both absolute and relative brain size, as well as in the relative sizes of brain parts, among divergent nine-spined stickleback (Pungitius pungitius) populations. Some traits show habitat-dependent divergence, implying natural selection being responsible for the observed patterns. Namely, marine sticklebacks have relatively larger bulbi olfactorii (chemosensory centre) and telencephala (involved in learning) than pond sticklebacks. Further, I demonstrate the importance of common garden studies in drawing firm evolutionary conclusions. In the following three chapters I show how the social environment and perceived predation risk shapes brain development. In common frog (Rana temporaria) tadpoles, I demonstrate that under the highest per capita predation risk, tadpoles develop smaller brains than in less risky situations, while high tadpole density results in enlarged tectum opticum (visual brain centre). Visual contact with conspecifics induces enlarged tecta optica in nine-spined sticklebacks, whereas when only olfactory cues from conspecifics are available, bulbus olfactorius become enlarged.Perceived predation risk results in smaller hypothalami (complex function) in sticklebacks. Further, group-living has a negative effect on relative brain size in the competition-adapted pond sticklebacks, but not in the predation-adapted marine sticklebacks. Perceived predation risk induces enlargement of bulbus olfactorius in pond sticklebacks, but not in marine sticklebacks who have larger bulbi olfactorii than pond fish regardless of predation. In sum, my studies demonstrate how applying a microevolutionary approach can help us to understand the enormous variation observed in the brains of wild animals a point-of-view which I high-light in the closing review chapter of my thesis.