7 resultados para Mahila Kahanikarom Ki Kahani
em Helda - Digital Repository of University of Helsinki
Resumo:
Cell proliferation, transcription and metabolism are regulated by complex partly overlapping signaling networks involving proteins in various subcellular compartments. The objective of this study was to increase our knowledge on such regulatory networks and their interrelationships through analysis of MrpL55, Vig, and Mat1 representing three gene products implicated in regulation of cell cycle, transcription, and metabolism. Genome-wide and biochemical in vitro studies have previously revealed MrpL55 as a component of the large subunit of the mitochondrial ribosome and demonstrated a possible role for the protein in cell cycle regulation. Vig has been implicated in heterochromatin formation and identified as a constituent of the RNAi-induced silencing complex (RISC) involved in cell cycle regulation and RNAi-directed transcriptional gene silencing (TGS) coupled to RNA polymerase II (RNAPII) transcription. Mat1 has been characterized as a regulatory subunit of cyclin-dependent kinase 7 (Cdk7) complex phosphorylating and regulating critical targets involved in cell cycle progression, energy metabolism and transcription by RNAPII. The first part of the study explored whether mRpL55 is required for cell viability or involved in a regulation of energy metabolism and cell proliferation. The results revealed a dynamic requirement of the essential Drosophila mRpL55 gene during development and suggested a function of MrpL55 in cell cycle control either at the G1/S or G2/M transition prior to cell differentiation. This first in vivo characterization of a metazoan-specific constituent of the large subunit of mitochondrial ribosome also demonstrated forth compelling evidence of the interconnection of nuclear and mitochondrial genomes as well as complex functions of the evolutionarily young metazoan-specific mitochondrial ribosomal proteins. In studies on the Drosophila RISC complex regulation, it was noted that Vig, a protein involved in heterochromatin formation, unlike other analyzed RISC associated proteins Argonaute2 and R2D2, is dynamically phosphorylated in a dsRNA-independent manner. Vig displays similarity with a known in vivo substrate for protein kinase C (PKC), human chromatin remodeling factor Ki-1/57, and is efficiently phosphorylated by PKC on multiple sites in vitro. These results suggest that function of the RISC complex protein Vig in RNAi-directed TGS and chromatin modification may be regulated through dsRNA-independent phosphorylation by PKC. In the third part of this study the role of Mat1 in regulating RNAPII transcription was investigated using cultured murine immortal fibroblasts with a conditional allele of Mat1. The results demonstrated that phosphorylation of the carboxy-terminal domain (CTD) of the large subunit of RNAPII in the heptapeptide YSPTSPS repeat in Mat-/- cells was over 10-fold reduced on Serine-5 and subsequently on Serine-2. Occupancy of the hypophosphorylated RNAPII in gene bodies was detectably decreased, whereas capping, splicing, histone methylation and mRNA levels were generally not affected. However, a subset of transcripts in absence of Mat1 was repressed and associated with decreased occupancy of RNAPII at promoters as well as defective capping. The results identify the Cdk7-CycH-Mat1 kinase submodule of TFIIH as a stimulatory non-essential regulator of transcriptional elongation and a genespecific essential factor for stable binding of RNAPII at the promoter region and capping. The results of these studies suggest important roles for both MrpL55 and Mat1 in cell cycle progression and their possible interplay at the G2/M stage in undifferentiated cells. The identified function of Mat1 and of TFIIH kinase complex in gene-specific transcriptional repression is challenging for further studies in regard to a possible link to Vig and RISC-mediated transcriptional gene silencing.
Resumo:
Microneurovascular free muscle transfer with cross-over nerve grafts in facial reanimation Loss of facial symmetry and mimetic function as seen in facial paralysis has an enormous impact on the psychosocial conditions of the patients. Patients with severe long-term facial paralysis are often reanimated with a two-stage procedure combining cross-facial nerve grafting, and 6 to 8 months later with microneurovascular (MNV) muscle transfer. In this thesis, we recorded the long-term results of MNV surgery in facial paralysis and observed the possible contributing factors to final functional and aesthetic outcome after this procedure. Twenty-seven out of forty patients operated on were interviewed, and the functional outcome was graded. Magnetic resonance imaging (MRI) of MNV muscle flaps was done, and nerve graft samples (n=37) were obtained in second stage of the operation and muscle biopsies (n=18) were taken during secondary operations.. The structure of MNV muscles and nerve grafts was evaluated using histological and immunohistochemical methods ( Ki-67, anti-myosin fast, S-100, NF-200, CD-31, p75NGFR, VEGF, Flt-1, Flk-1). Statistical analysis was performed. In our studies, we found that almost two-thirds of the patients achieved good result in facial reanimation. The longer the follow-up time after muscle transfer the weaker was the muscle function. A majority of the patients (78%) defined their quality of life improved after surgery. In MRI study, the free MNV flaps were significantly smaller than originally. A correlation was found between good functional outcome and normal muscle structure in MRI. In muscle biopsies, the mean muscle fiber diameter was diminished to 40% compared to control values. Proliferative activity of satellite cells was seen in 60% of the samples and it tended to decline with an increase of follow-up time. All samples showed intramuscular innervation. Severe muscle atrophy correlated with prolonged intraoperative ischaemia. The good long-term functional outcome correlated with dominance of fast fibers in muscle grafts. In nerve grafts, the mean number of viable axons amounted to 38% of that in control samples. The grafted nerves characterized by fibrosis and regenerated axons were thinner than in control samples although they were well vascularized. A longer time between cross facial nerve grafting and biopsy sampling correlated with a higher number of viable axons. P75Nerve Growth Factor Receptor (p75NGFR) was expressed in every nerve graft sample. The expression of p75NGFR was lower in older than in younger patients. A high expression of p75NGFR was often seen with better function of the transplanted muscle. In grafted nerve Vascular Endothelial Growth Factor (VEGF) and its receptors were expressed in nervous tissue. In conclusion, most of the patients achieved good result in facial reanimation and were satisfied with the functional outcome. The mimic function was poorer in patients with longer follow-up time. MRI can be used to evaluate the structure of the microneurovascular muscle flaps. Regeneration of the muscle flaps was still going on many years after the transplantation and reinnervation was seen in all muscle samples. Grafted nerves were characterized by fibrosis and fewer, thinner axons compared to control nerves although they were well vascularized. P75NGFR and VEGF were expressed in human nerve grafts with higher intensity than in control nerves which is described for the first time.
Resumo:
Carotid artery disease is the most prevalent etiologic precursor of ischemic stroke, which is a major health hazard and the second most common cause of death in the world. If a patient presents with a symptomatic high-grade (>70%) stenosis in the internal carotid artery, the treatment of choice is carotid endarterectomy. However, the natural course of radiologically equivalent carotid lesions may be clinically quite diverse, and the reason for that is unknown. It would be of utmost importance to develop molecular markers that predict the symptomatic phenotype of an atherosclerotic carotid plaque (CP) and help to differentiate vulnerable lesions from stable ones. The aim of this study was to investigate the morphologic and molecular factors that associate with stroke-prone CPs. In addition to immunohistochemistry, DNA microarrays were utilized to identify molecular markers that would differentiate between symptomatic and asymptomatic CPs. Endothelial adhesion molecule expression (ICAM-1, VCAM-1, P-selectin, and E-selectin) did not differ between symptomatic and asymptomatic patients. Denudation of endothelial cells was associated with symptom-generating carotid lesions, but in studies on the mechanism of decay of endothelial cells, markers of apoptosis (TUNEL, activated caspase 3) were found to be decreased in the endothelium of symptomatic lesions. Furthermore, markers of endothelial apoptosis were directly associated with those of cell proliferation (Ki-67) in all plaques. FasL expression was significantly increased on the endothelium of symptomatic CPs. DNA microarray analysis revealed prominent induction of specific genes in symptomatic CPs, including those subserving iron and heme metabolism, namely HO-1, and hemoglobin scavenger receptor CD163. HO-1 and CD163 proteins were also increased in symptomatic CPs and associated with intraplaque iron deposits, which, however, did not correlate with symptom status itself. ADRP, the gene for adipophilin, was also overexpressed in symptomatic CPs. Adipophilin expression was markedly increased in ulcerated CPs and colocalized with extravasated red blood cells and cholesterol crystals. Taken together, the phenotypic characteristics and the numerous possible molecular mediators of the destabilization of carotid plaques provide potential platforms for future research. The denudation of the endothelial lining observed in symptomatic CPs may lead to direct thromboembolism and maintain harmful oxidative and inflammatory processes, predispose to plaque microhemorrhages, and contribute to lipid accumulation into the plaque, thereby making it vulnerable to rupture.
Resumo:
Head and neck squamous cell cancer (HNSCC) is the sixth most common cancer worldwide. Despite advances in combined modality therapy (surgery, radiotherapy, chemotherapy) the 5-year survival rate in stage III and IV disease remains at 40% - 60%. Short-range Auger-electron emitters, such as In-111 and In-114m, tagged with a drug, molecule, peptide, protein or nanoparticles brought in close proximity to nuclear DNA represent a fascinating alternative for treating cancer. In this thesis, we studied the usefulness of Indium-111-bleomycin complex (In-111-BLMC) in the diagnostics and potential therapy of HNSCC using in vitro HNSCC cell lines, in vivo nude mice, and in vivo HNSCC patients. In in vitro experiments with HNSCC cell lines, the sensitivity to external beam radiation, BLM, In-111-BLMC, and In-111-Cl3 was studied using the 96-well plate clonogenic assay. The influence of BLM and In-111-BLMC on the cell cycle was measured with flow cytometry. In in vivo nude mice xenograft studies, the activity ratios of In-111-BLMC were obtained in gamma camera images. The effect of In-111-BLMC in HNSCC xenografts was studied. In in vivo patient studies, we determined the tumor uptake of In-111-BLMC with gamma camera and the radioactivity from tumor samples using In-111-BLMC with specific activity of 75, 175, or 375 MBq/mg BLM. The S values, i.e. absorbed dose in a target organ per cumulated activity in a source organ, were simulated for In-111 and In-114m. In vitro studies showed the variation of sensitivity for external beam radiation, BLM, and In-111-BLMC between HNSCC cell lines. IC50 values for BLM were 1.6-, 1.8-, and 2.1-fold higher than In-111-BLMC (40 MBq/mg BLM) in three HNSCC cell lines. Specific In-111 activity of 40 MBq/mgBLM was more effective in killing cells than specific In-111 activity of 195MBq/mgBLM (p=0.0023). In-111-Cl3 alone had no killing effect. The percentage of cells in the G2/M phase increased after exposure to BLM and especially to In-111-BLMC in the three cell lines studied, indicating a G2/M block. The tumor-seeking behavior was shown in the in vivo imaging study of xenografted mice. BLM and In-111-BLMC were more effective than NaCl in reducing xenografted tumor size in HNSCC. The uptake ratios received from gamma images in the in vivo patient study varied from 1.2 to 2.8 in malignant tumors. However, the uptake of In-111-BLMC was unaffected by increasing the injected activity. A positive correlation existed between In-111-BLMC uptake, Ki-67/MIB activity, and number of mitoses. Regarding the S values, In-114m delivered a 4-fold absorbed radiation dose into the tumor compared with In-111, and thus, In-114m-BLMC might be more effective than In-111-BLMC at the DNA level. Auger-electron emitters, such as In-111 and In-114m, might have potential in the treatment of HNSCC. Further studies are needed to develop a radiopharmaceutical agent with appropriate physical properties of the radionuclide and a suitable carrier to bring it to the targeted tissue.
Resumo:
Background and aims: Low stage and curative surgery are established factors for improved survival in gastric cancer. However, not all low-stage patients have a good prognosis. Cyclooxygenase-2 (COX-2) is known to associate with reduced survival in several cancers, and has been shown to play an important role in gastric carcinogenesis. Since new and better prognostic markers are needed for gastric cancer, we studied the prognostic significance of COX-2 and of markers that associate with COX-2 expression. We also studied markers reflecting proliferation and apoptosis, and evaluated their association with COX-2. Our purpose was to construct an accurate prognostic model by combining tissue markers and clinicopathogical factors. Materials and methods: Of 342 consecutive patients who underwent surgery for gastric cancer at Meilahti Hospital, Helsinki University Central Hospital, 337 were included in this study. Low stages I to II were represented by 141 (42%) patients, and high stages III to IV by 196 (58%). Curative surgery was performed on 176 (52%) patients. Survival data were obtained from the national registers. Slides from archive tissue blocks were prepared for immunohistochemistry by use of COX-2, human antigen R (HuR), cyclin A, matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), and Ki-67 antibodies. Immunostainings were scored by microscopy, and scores were entered into a database. Associations of tumor markers with clinicopathological factors were calculated, as well as associations with p53, p21, and results of flow cytometry from earlier studies. Survival analysis was performed by the Kaplan-Meier method, and Cox multivariate models were reconstructed. Cell culture experiments were performed to explore the effect of small interfering (si)RNA of HuR on COX-2 expression in a TMK-1 gastric cancer cell line. Results: Overall 5-year survival was 35.1%. Study I showed that COX-2 was an independent prognostic factor, and that the prognostic impact of COX-2 was more pronounced in low-stage patients. Cytoplasmic HuR expression also associated with reduced survival in gastric cancer patients in a non-independent manner. Cell culture experiments showed that HuR can regulate COX-2 expression in TMK-1 cells in vitro, with an association also between COX-2 and HuR tissue expression in a clinical material. In Study II, cyclin A was an independent prognostic factor and was associated with HuR expression in the gastric cancer material. The results of Study III showed that epithelial MMP-2 associated with survival in univariate, but not in multivariate analysis. However, MMP-9 showed no prognostic value. MMP-2 expression was associated with COX-2 expression. In Study IV, the prognostic power of COX-2 was compared with that of all tested markers associated with survival in Studies I to III, as well as with p21, p53, and flow cytometry results. COX-2 and p53 were independent prognostic factors, and COX-2 expression was associated with that of p53 and Ki-67 and also with aneuploidy. Conclusions: COX-2 is an independent prognostic factor in gastric cancer, and its prognostic power emerges especially in low stage cancer. COX-2 is regulated by HuR, and is associated with factors reflecting invasion, proliferation, and apoptosis. In an extended multivariate model, COX-2 retained its position as an independent prognosticator. COX-2 can be considered a promising new prognostic marker in gastric cancer.
Resumo:
Late twentieth century Jesus-novels search after a completely new picture of Jesus. Novels written for instance by Norman Mailer, José Saramago, Michèle Roberts, Marianne Fredriksson, and Ki Longfellow provide an inversive revision of the canonic Gospels. They read the New Testament in terms of the present age. In their adaptation the story turns often into a critique of the whole Christian history. The investigated contrast-novels end up with an appropriation that is based on prototypical rewriting. They aim at the rehabilitation of Judas, and some of them make Mary Magdalane the key figure of Christianity. Saramago describes God as a blood thirsty tyrant, and Mailer makes God combat with the Devil in a manichean sense as with an equal. Such ideas are familiar both from poststructuralist philosophy and post-metaphysical death-of-God theology. The main result of the intertextual analysis is that these scholars have adopted Nietzschean ideas in their writing. Quite unlike earlier Jesus-novels, these more recent novels present a revision that produces discontinuity with the original source text, the New Testament. The intertextual strategy is based on contradiction. The reader wittnesses contesting and challenging, the authors attack Biblical beliefs and attempt to dissolve Christian doctrines. An attack on Biblical slave morality and violent concept of God deprives Jesus of his Jewish Messianic identity, makes Old Testament law a contradiction of life, calls sacrificial soteriology a violent pattern supporting oppression, and presents God as a cruel monster who enslaves people under his commandments and wishes their death. The new Jesus-figure contests Mosaic Law, despises orthodox Judaism, abandons Jewish customs and even questions Old Testament monotheism. In result, the novels intentionally transfer Jesus out of Judaism. Furthermore, Jewish faith appears in a negative light. Such an intertextual move is not open anti-Semitism but it cannot avoid attacking Jewish worship. Why? One reason that explains these attitudes is that Western culture still carries anti-Judaic attitudes beneath the surface covered with sentiments of equality and tolerance. Despite the evident post-holocaust consciousness present in the novels, they actually adopt an arrogant and ironical refutation of Jewish beliefs and Old Testament faith. In these novels, Jesus is made a complete opposite and antithesis to Judaism. Key words: Jesus-novel, intertextuality, adaptation, slave morality, Nietzsche, theodicy, patriarchy.
Resumo:
Uveal melanoma (UM) is the second most common primary intraocular cancer worldwide. It is a relatively rare cancer, but still the second most common type of primary malignant melanoma in humans. UM is a slowly growing tumor, and gives rise to distant metastasis mainly to the liver via the bloodstream. About 40% of patients with UM die of metastatic disease within 10 years of diagnosis, irrespective of the type of treatment. During the last decade, two main lines of research have aimed to achieve enhanced understanding of the metastasis process and accurate prognosis of patients with UM. One emphasizes the characteristics of tumor cells, particularly their nucleoli, and markers of proliferation, and the other the characteristics of tumor blood vessels. Of several morphometric measurements, the mean diameter of the ten largest nucleoli (MLN) has become the most widely applied. A large MLN has consistently been associated with high likelihood of dying from UM. Blood vessels are of paramount importance in metastasis of UM. Different extravascular matrix patterns can be seen in UM, like loops and networks. This presence is associated with death from metastatic melanoma. However, the density of microvessels is also of prognostic importance. This study was undertaken to help understanding some histopathological factors which might contribute to developing metastasis in UM patients. Factors which could be related to tumor progression to metastasis disease, namely nucleolar size, MLN, microvascular density (MVD), cell proliferation, and The Insulin-like Growth Factor 1 Receptor(IGF-1R), were investigated. The primary aim of this thesis was to study the relationship between prognostic factors such as tumor cell nucleolar size, proliferation, extravascular matrix patterns, and dissemination of UM, and to assess to what extent there is a relationship to metastasis. The secondary goal was to develop a multivariate model which includes MLN and cell proliferation in addition to MVD, and which would fit better with population-based, melanoma-related survival data than previous models. I studied 167 patients with UM, who developed metastasis even after a very long time following removal of the eye, metastatic disease was the main cause of death, as documented in the Finnish Cancer Registry and on death certificates. Using an independent population-based data set, it was confirmed that MLN and extravascular matrix loops and networks were unrelated, independent predictors of survival in UM. Also, it has been found that multivariate models including MVD in addition to MLN fitted significantly better with survival data than models which excluded MVD. This supports the idea that both the characteristics of the blood vessels and the cells are important, and the future direction would be to look for the gene expression profile, whether it is associated more with MVD or MLN. The former relates to the host response to the tumor and may not be as tightly associated with the gene expression profile, yet most likely involved in the process of hematogenous metastasis. Because fresh tumor material is needed for reliable genetic analysis, such analysis could not be performed Although noninvasive detection of certain extravascular matrix patterns is now technically possible,in managing patients with UM, this study and tumor genetics suggest that such noninvasive methods will not fully capture the process of clinical metastasis. Progress in resection and biopsy techniques is likely in the near future to result in fresh material for the ophthalmic pathologist to correlate angiographic data, histopathological characteristics such as MLN, and genetic data. This study supported the theory that tumors containing epithelioid cells grow faster and have poorer prognosis when studied by cell proliferation in UM based on Ki-67 immunoreactivity. Cell proliferation index fitted best with the survival data when combined with MVD, MLN, and presence of epithelioid cells. Analogous with the finding that high MVD in primary UM is associated with shorter time to metastasis than low MVD, high MVD in hepatic metastasis tends to be associated with shorter survival after diagnosis of metastasis. Because the liver is the main organ for metastasis from UM, growth factors largely produced in the liver hepatocyte growth factor, epidermal growth factor and insulin-like growth factor-1 (IGF-1) together with their receptors may have a role in the homing and survival of metastatic cells. Therefore the association between immunoreactivity for IGF-1R in primary UM and metastatic death was studied. It was found that immunoreactivity for IGF-IR did not independently predict metastasis from primary UM in my series.