16 resultados para MOLECULAR ASSOCIATION
em Helda - Digital Repository of University of Helsinki
Resumo:
Neurofibromatosis 2 (NF2) is an autosomal dominant disorder manifested by the formation of multiple benign tumors of the nervous system. Affected individuals typically develop bilateral vestibular schwannomas which lead to deafness and balance disorders. The syndrome is caused by inactivation of the NF2 tumor suppressor gene, and mutation or loss of the NF2 product, merlin, is sufficient for tumorigenesis in both hereditary and sporadic NF2-associated tumors. Merlin belongs to the band 4.1 superfamily of cytoskeletal proteins, which also contain the related ezrin, radixin, and moesin (ERM) proteins. The ERM members provide a link between the cell cytoskeleton and membrane by connecting membrane-associated proteins to actin filaments. By stabilizing complexes in the cell cortex, the ERMs modulate morphology, growth, and migration of cells. Despite their structural homology, overlapping subcellular distribution, direct molecular association, and partial overlap of molecular interactions, merlin and ezrin exert opposite effects on cell proliferation. Merlin suppresses cell proliferation, whereas ezrin expression is linked to oncogenic activity. We hypothesized that the regions which differ between the proteins might explain merlin s specificity as a tumor suppressor. We therefore analyzed the regions, which are most diverse between merlin and ezrin; the N-terminal tail and the C-terminus. To determine the properties of the C-terminal region, we studied the two most predominant merlin isoforms together with truncation variants similar to those found in patients. We also focused on the evolutionally conserved C-terminal residues, E545-E547, that harbor disease causing mutations in its corresponding DNA sequence. In addition to inhibiting cell proliferation, merlin regulates cytoskeletal organization. The morphogenic properties of merlin may play a role in tumor suppression, since patient-derived tumor cells demonstrate cytoskeletal abnormalities. We analyzed the mechanisms of merlin-induced extension formation and determined that the C-terminal region of amino acids 538-568 is particularly important for the morphogenic activity. We also characterized the role of C-terminal merlin residues in the regulation of proliferation, phosphorylation, and intramolecular associations. In contrast to previous reports, we demonstrated that both merlin isoforms are able to suppress cell proliferation, whereas C-terminally mutated merlin constructs showed reduced growth inhibition. Phosphorylation serves as a mechanism to regulate the tumor suppressive activity of merlin. The C-terminal serine 518 is phosphorylated in response to both p21-activated kinase (PAK) and protein kinase A (PKA), which inactivates the growth inhibitory function of merlin. However, at least three differentially phosphorylated forms of the protein exist. In this study we demonstrated that also the N-terminus of merlin is phosphorylated by AGC kinases, and that both PKA and Akt phosphorylate merlin at serine 10 (S10). We evaluated the impact of this N-terminal tail phosphorylation, and showed that the phosphorylation state of S10 is an important regulator of merlin s ability to modulate cytoskeletal organization but also regulates the stability of the protein. In summary, this study describes the functional effect of merlin specific regions. We demonstrate that both S10 in the N-terminal tail and residues E545-E547 in the C-terminus are essential for merlin activity and function.
Resumo:
Habitat fragmentation produces patches of suitable habitat surrounded by unfavourable matrix habitat. A species may persist in such a fragmented landscape in an equilibrium between the extinctions and recolonizations of local populations, thus forming a metapopulation. Migration between local populations is necessary for the long-term persistence of a metapopulation. The Glanville fritillary butterfly (Melitaea cinxia) forms a metapopulation in the Åland islands in Finland. There is migration between the populations, the extent of which is affected by several environmental factors and variation in the phenotype of individual butterflies. Different allelic forms of the glycolytic enzyme phosphoglucose isomerase (Pgi) has been identified as a possible genetic factor influencing flight performance and migration rate in this species. The frequency of a certain Pgi allele, Pgi-f, follows the same pattern in relation to population age and connectivity as migration propensity. Furthermore, variation in flight metabolic performance, which is likely to affect migration propensity, has been linked to genetic variation in Pgi or a closely linked locus. The aim of this study was to investigate the association between Pgi genotype and the migration propensity in the Glanville fritillary both at the individual and population levels using a statistical modelling approach. A mark-release-recapture (MRR) study was conducted in a habitat patch network of M. cinxia in Åland to collect data on the movements of individual butterflies. Larval samples from the study area were also collected for population level examinations. Each butterfly and larva was genotyped at the Pgi locus. The MRR data was parameterised with two mathematical models of migration: the Virtual Migration Model (VM) and the spatially explicit diffusion model. VM model predicted and observed numbers of emigrants from populations with high and low frequencies of Pgi-f were compared. Posterior predictive data sets were simulated based on the parameters of the diffusion model. Lack-of-fit of observed values to the model predicted values of several descriptors of movements were detected, and the effect of Pgi genotype on the deviations was assessed by randomizations including the genotype information. This study revealed a possible difference in the effect of Pgi genotype on migration propensity between the two sexes in the Glanville fritillary. The females with and males without the Pgi-f allele moved more between habitat patches, which is probably related to differences in the function of flight in the two sexes. Females may use their high flight capacity to migrate between habitat patches to find suitable oviposition sites, whereas males may use it to acquire mates by keeping a territory and fighting off other intruding males, possibly causing them to emigrate. The results were consistent across different movement descriptors and at the individual and population levels. The effect of Pgi is likely to be dependent on the structure of the landscape and the prevailing environmental conditions.
Resumo:
Type 1 diabetes is a disease where the insulin-producing beta cells of the pancreas are destroyed by an autoimmune mechanism. The incidence of type 1 diabetes, as well as the incidence of the diabetic kidney complication, diabetic nephropathy, are increasing worldwide. Nephrin is a crucial molecule for the filtration function of the kidney. It localises in the podocyte foot processes partially forming the interpodocyte final sieve of the filtration barrier, the slit diaphragm. The expression of nephrin is altered in diabetic nephropathy. Recently, nephrin was found from the beta cells of the pancreas as well, which makes this molecule interesting in the context of type 1 diabetes and especially in diabetic nephropathy. In this thesis work, the expression of other podocyte molecules in the beta cells of the pancreas, in addition to nephrin, were deciphered. It was also hypothesised that patients with type 1 diabetes may develop autoantibodies against novel beta cell molecules comparably to the formation of autoantibodies to GAD, IA-2 and insulin. The possible association of such novel autoantibodies with the pathogenesis of diabetic nephropathy was also assessed. Furthermore, expression of nephrin in lymphoid tissues has been suggested, and this issue was more thoroughly deciphered here. The expression of nephrin in the human lymphoid tissues, and a set of podocyte molecules in the human, mouse and rat pancreas at the gene and protein level were studied by polymerase chain reaction (PCR) -based methods and immunochemical methods. To detect autoantibodies to novel beta cell molecules, specific radioimmunoprecipitation assays were developed. These assays were used to screen a follow-up material of 66 patients with type 1 diabetes and a patient material of 150 diabetic patients with signs of diabetic nephropathy. Nephrin expression was detected in the lymphoid follicle germinal centres, specifically in the follicular dendritic cells. In addition to the previously reported expression of nephrin in the pancreas, expression of the podocyte molecules, densin, filtrin, FAT and alpha-actinin-4 were detected in the beta cells. Circulating antibodies to nephrin, densin and filtrin were discovered in a subset of patients with type 1 diabetes. However, no association of these autoantibodies with the pathogenesis of diabetic nephropathy was detected. In conclusion, the expression of five podocyte molecules in the beta cells of the pancreas suggests some molecular similarities between the two cell types. The novel autoantibodies against shared molecules of the kidney podocytes and the pancreatic beta cells appear to be part of the common autoimmune mechanism in patients with type 1 diabetes. No data suggested that the autoantibodies would be active participants of the kidney injury detected in diabetic nephropathy.
Resumo:
Colorectal cancer (CRC) is one of the most frequent malignancies in Western countries. Inherited factors have been suggested to be involved in 35% of CRCs. The hereditary CRC syndromes explain only ~6% of all CRCs, indicating that a large proportion of the inherited susceptibility is still unexplained. Much of the remaining genetic predisposition for CRC is probably due to undiscovered low-penetrance variations. This study was conducted to identify germline and somatic changes that contribute to CRC predisposition and tumorigenesis. MLH1 and MSH2, that underlie Hereditary non-polyposis colorectal cancer (HNPCC) are considered to be tumor suppressor genes; the first hit is inherited in the germline and somatic inactivation of the wild type allele is required for tumor initiation. In a recent study, frequent loss of the mutant allele in HNPCC tumors was detected and a new model, arguing against the two-hit hypothesis, was proposed for somatic HNPCC tumorigenesis. We tested this hypothesis by conducting LOH analysis on 25 colorectal HNPCC tumors with a known germline mutation in the MLH1 or MSH2 genes. LOH was detected in 56% of the tumors. All the losses targeted the wild type allele supporting the classical two-hit model for HNPCC tumorigenesis. The variants 3020insC, R702W and G908R in NOD2 predispose to Crohn s disease. Contribution of NOD2 to CRC predisposition has been examined in several case-control series, with conflicting results. We have previously shown that 3020insC does not predispose to CRC in Finnish CRC patients. To expand our previous study the variants R702W and G908R were genotyped in a population-based series of 1042 Finnish CRC patients and 508 healthy controls. Association analyses did not show significant evidence for association of the variants with CRC. Single nucleotide polymorphism (SNP) rs6983267 at chromosome 8q24 was the first CRC susceptibility variant identified through genome-wide association studies. To characterize the role of rs6983267 in CRC predisposition in the Finnish population, we genotyped the SNP in the case-control material of 1042 cases and 1012 controls and showed that G allele of rs6983267 is associated with the increased risk of CRC (OR 1.22; P=0.0018). Examination of allelic imbalance in the tumors heterozygous for rs6983267 revealed that copy number increase affected 22% of the tumors and interestingly, it favored the G allele. By utilizing a computer algorithm, Enhancer Element Locator (EEL), an evolutionary conserved regulatory motif containing rs6983267 was identified. The SNP affected the binding site of TCF4, a transcription factor that mediates Wnt signaling in cells, and has proven to be crucial in colorectal neoplasia. The preferential binding of TCF4 to the risk allele G was showed in vitro and in vivo. The element drove lacZ marker gene expression in mouse embryos in a pattern that is consistent with genes regulated by the Wnt signaling pathway. These results suggest that rs6983267 at 8q24 exerts its effect in CRC predisposition by regulating gene expression. The most obvious target gene for the enhancer element is MYC, residing ~335 kb downstream, however further studies are required to establish the transcriptional target(s) of the predicted enhancer element.
Resumo:
Schizophrenia, affecting about 1% of population worldwide, is a severe mental disorder characterized by positive and negative symptoms, such as psychosis and anhedonia, as well as cognitive deficits. At present, schizophrenia is considered a complex disorder of neurodevelopmental origin with both genetic and environmental factors contributing to its onset. Although a number of candidate genes for schizophrenia have been highlighted, only very few schizophrenia patients are likely to share identical genetic liability. This study is based on the nation-wide schizophrenia family sample of the National Institute for Health and Welfare, and represents one of the largest and most well-characterized familial series in the world. In the first part of this study, we investigated the roles of the DTNBP1, NRG1, and AKT1 genes in the background of schizophrenia in Finland. Although these genes are associated with schizophrenia liability in several populations, any significant association with clinical diagnostic information of schizophrenia remained absent in our sample of 441 schizophrenia families. In the second part of this study, we first replicated schizophrenia linkage on the long arm of chromosome 7 in 352 schizophrenia families. In the following association analysis, we utilized additional clinical disorder features and intermediate phenotypes – endophenotypes - in addition to diagnostic information from altogether 290 neuropsychologically assessed schizophrenia families. An intragenic short tandem repeat allele of the regional RELN gene, supposed to play a role in the background of several neurodevelopmental disorders, showed significant association with poorer cognitive functioning and more severe schizophrenia symptoms. Additionally, this risk allele was significantly more prevalent among the individuals affected with schizophrenia spectrum disorders. We have previously identified linkage of schizophrenia and its cognitive endophenotypes on the long arms of chromosomes 2, 4, and 5. In the last part of this study, we selected altogether 104 functionally relevant candidate genes from the linked regions. We detected several promising associations, of which especially interesting are the ERBB4 gene, showing association with the severity of schizophrenia symptoms and impairments in traits related to verbal abilities, and the GRIA1 gene, showing association with the severity of schizophrenia symptoms. Our results extend the previous evidence that the genetic risk for schizophrenia is at least partially mediated via the effects of the candidate genes and their combinations on relevant brain systems, resulting in alterations in different disorder domains, such as the cognitive deficits.
Resumo:
Populations in developed countries are ageing fast. The elderly have the greatest incidence of de-mentia, and thus the increase in the number of demented individuals, increases the immediate costs for the governments concerning healthcare and hospital treatment. Attention is being paid to disorders behind cognitive impairment with behavioural and psychological symptoms, which are enormous contributors to the hospital care required for the elderly. The highest dreams are in prevention; however, before discovering the tools for preventing dementia, the pathogenesis behind dementia disorders needs to be understood. Dementia with Lewy bodies (DLB), a relatively recently discovered dementia disorder compared to Alzheimer’s disease (AD), is estimated to account for up to one third of primary degenerative dementia, thus being the second most common cause of dementia in the elderly. Nevertheless, the impact of neuropathological and genetic findings on the clinical syndrome of DLB is not fully established. In this present series of studies, the frequency of neuropathological findings of DLB and its relation to the clinical findings was evaluated in a cohort of subjects with primary degenerative dementia and in a population-based prospective cohort study of individuals aged 85 years or older. α-synuclein (αS) immunoreactive pathology classifiable according to the DLB consensus criteria was found in one fourth of the primary degenerative dementia subjects. In the population-based study, the corresponding figure was one third of the population, 38% of the demented and one fifth of the non-demented very elderly Finns. However, in spite of the frequent discovery of αS pathology, its association with the clinical symptoms was quite poor. Indeed, the common clinical features of DLB, hypokinesia and visual hallucinations, associated better with the severe neurofibrillary AD-type pathology than with the extensive (diffuse neocortical) αS pathology when both types of pathology were taken into account. The severity of the neurofibrillary AD-type pathology (Braak stage) associated with the extent of αS pathology in the brain. In addition, the genetic study showed an interaction between tau and αS; common variation in the αS gene (SNCA) associated significantly with the severity of the neurofibrillary AD-type pathology and nominally significantly with the extensive αS pathology. Further, the relevance and temporal course of the substantia nigra (SN) degeneration and of the spinal cord αS pathology were studied in relation to αS pathology in the brain. The linear association between the extent of αS pathology in the brain and the neuron loss in SN suggests that in DLB the degeneration of SN proceeds as the αS pathology extends from SN to the neocortex instead of early destruction of SN seen in Parkinson’s disease (PD). Furthermore, the extent of αS pathology in the brain associated with the severity of αS pathology in the thoracic and sacral autonomic nuclei of the spinal cord. The thoracic αS pathology was more common and more severe compared to sacral cord, suggesting that the progress of αS pathology proceeds downwards from the brainstem towards the sacral spinal cord.
Resumo:
Celiac disease, or gluten intolerance, is triggered by dietary glutens in genetically susceptible individuals and it affects approximately 1% of the Caucasian population. The best known genetic risk factors for celiac disease are HLA DQ2 and DQ8 heterodimers, which are necessary for the development of the disease. However, they alone are not sufficient for disease induction, other risk factors are required. This thesis investigated genetic factors for celiac disease, concentrating on susceptibility loci on chromosomes 5q31-q33, 19p13 and 2q12 previously reported in genome-wide linkage and association studies. In addition, a novel genotyping method for the detection of HLA DQ2 and DQ8 coding haplotypes was validated. This study was conducted using Finnish and Hungarian family materials, and Finnish, Hungarian and Italian case-control materials. Genetic linkage and association were analysed in these materials using candidate gene and fine-mapping approaches. The results confirmed linkage to celiac disease on the chromosomal regions 5q31-q33 and 19p13. Fine-mapping on chromosome 5q31-q33 revealed several modest associations in the region, and highlighted the need for further investigations to locate the causal risk variants. The MYO9B gene on chromosome 19p13 showed evidence for linkage and association particularly with dermatitis herpetiformis, the skin manifestation of celiac disease. This implies a potential difference in the genetic background of the intestinal and skin forms of the disease, although studies on larger samplesets are required. The IL18RAP locus on chromosome 2q12, shown to be associated with celiac disease in a previous genome-wide association study and a subsequent follow-up, showed association in the Hungarian population in this study. The expression of IL18RAP was further investigated in small intestinal tissue and in peripheral blood mononuclear cells. The results showed that IL18RAP is expressed in the relevant tissues. Two putative isoforms of IL18RAP were detected by Western blot analysis, and the results suggested that the ratios and total levels of these isoforms may contribute to the aetiology of celiac disease. A novel genotyping method for celiac disease-associated HLA haplotypes was also validated in this thesis. The method utilises single-nucleotide polymorphisms tagging these HLA haplotypes with high sensitivity and specificity. Our results suggest that this method is transferable between populations, and it is suitable for large-scale analysis. In conclusion, this doctorate study provides an insight into the roles of the 5q31-q33, MYO9B, IL18RAP and HLA loci in the susceptibility to celiac disease in the Finnish, Hungarian and Italian populations, highlighting the need for further studies at these genetic loci and examination of the function of the candidate genes.
Resumo:
Glaucoma is the second leading cause of blindness worldwide. It is a group of optic neuropathies, characterized by progressive optic nerve degeneration, excavation of the optic disc due to apoptosis of retinal ganglion cells and corresponding visual field defects. Open angle glaucoma (OAG) is a subtype of glaucoma, classified according to the age of onset into juvenile and adult- forms with a cut-off point of 40 years of age. The prevalence of OAG is 1-2% of the population over 40 years and increases with age. During the last decade several candidate loci and three candidate genes, myocilin (MYOC), optineurin (OPTN) and WD40-repeat 36 (WDR36), for OAG have been identified. Exfoliation syndrome (XFS), age, elevated intraocular pressure and genetic predisposition are known risk factors for OAG. XFS is characterized by accumulation of grayish scales of fibrillogranular extracellular material in the anterior segment of the eye. XFS is overall the most common identifiable cause of glaucoma (exfoliation glaucoma, XFG). In the past year, three single nucleotide polymorphisms (SNPs) on the lysyl oxidase like 1 (LOXL1) gene have been associated with XFS and XFG in several populations. This thesis describes the first molecular genetic studies of OAG and XFS/XFG in the Finnish population. The role of the MYOC and OPTN genes and fourteen candidate loci was investigated in eight Finnish glaucoma families. Both candidate genes and loci were excluded in families, further confirming the heterogeneous nature of OAG. To investigate the genetic basis of glaucoma in a large Finnish family with juvenile and adult onset OAG, we analysed the MYOC gene in family members. Glaucoma associated mutation (Thr377Met) was identified in the MYOC gene segregating with the disease in the family. This finding has great significance for the family and encourages investigating the MYOC gene also in other Finnish OAG families. In order to identify the genetic susceptibility loci for XFS, we carried out a genome-wide scan in the extended Finnish XFS family. This scan produced promising candidate locus on chromosomal region 18q12.1-21.33 and several additional putative susceptibility loci for XFS. This locus on chromosome 18 provides a solid starting point for the fine-scale mapping studies, which are needed to identify variants conferring susceptibility to XFS in the region. A case-control and family-based association study and family-based linkage study was performed to evaluate whether SNPs in the LOXL1 gene contain a risk for XFS, XFG or POAG in the Finnish patients. A significant association between the LOXL1 gene SNPs and XFS and XFG was confirmed in the Finnish population. However, no association was detected with POAG. Probably also other genetic and environmental factors are involved in the pathogenesis of XFS and XFG.
Resumo:
Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a rare, dominantly inherited tumor predisposition syndrome characterized by benign cutaneous and uterine (ULM) leiomyomas, and sometimes renal cell cancer (RCC). A few cases of uterine leiomyosarcoma (ULMS) have also been reported. Mutations in a nuclear gene encoding fumarate hydratase (FH), an enzyme of the mitochondrial tricarboxylic acid cycle (TCA cycle), underlie HLRCC. As a recessive condition, germline mutations in FH predispose to a neurological defect, FH deficiency (FHD). Hereditary paragangliomatosis (HPGL) is a dominant disorder associated with paragangliomas and pheochromocytomas. Inherited mutations in three genes encoding subunits of succinate dehydrogenase (SDH), also a TCA cycle enzyme, predispose to HPGL. Both FH and SDH seem to act as tumor suppressors. One of the consequences of the TCA cycle defect is abnormal activation of HIF1 pathway ( pseudohypoxia ) in the HLRCC and HPGL tumors. HIF1 drives transcription of genes encoding e.g. angiogenetic factors which can facilitate tumor growth. Recently hypoxia/HIF1 has been suggested to be one of the causes of genetic instability as well. One of the aims of this study was to broaden the clinical definers of HLRCC. To determine the cancer risk and to identify possible novel tumor types associated with FH mutations eight Finnish HLRCC/FHD families were extensively evaluated. The extension of the pedigrees and the Finnish Cancer Registry based tumor search yielded genealogical and cancer data of altogether 868 individuals. The standardized incidence ratio-based comparison of HLRCC/FHD family members with general Finnish population revealed 6.5-fold risk for RCC. Moreover, risk for ULMS was highly increased. However, according to the recent and more stringent diagnosis criteria of ULMS many of the HLRCC uterine tumors previously considered malignant are at present diagnosed as atypical or proliferative ULMs (with a low risk of recurrence). Thus, the formation of ULMS (as presently defined) in HLRCC appears to be uncommon. Though increased incidence was not observed, interestingly the genetic analyses suggested possible association of breast and bladder cancer with loss of FH. Moreover, cancer cases were exceptionally detected in an FHD family. Another clinical finding was the conventional (clear cell) type RCC of a young Spanish HLRCC patient. Conventional RCC is distinct from the types previously observed in this syndrome but according to these results, FH mutation may underlie some of young conventional cancer cases. Secondly, the molecular pathway from defective TCA cycle to tumor formation was intended to clarify. Since HLRCC and HPGL tumors display abnormally activated HIF1, the hypothesis on the link between HIF1/hypoxia and genetic instability was of interest to study in HLRCC and HPGL tumor material. HIF1α (a subunit of HIF1) stabilization was confirmed in the majority of the specimens. However, no repression of MSH2, a protein of DNA mismatch repair system, or microsatellite instability (MSI), an indicator of genetic instability, was observed. Accordingly, increased instability seems not to play a role in the tumorigenesis of pseudohypoxic TCA cycle-deficient tumors. Additionally, to study the putative alternative functions of FH, a recently identified alternative FH transcript (FHv) was characterized. FHv was found to contain instead of exon 1, an alternative exon 1b. Differential subcellular distribution, lack of FH enzyme activity, low mRNA expression compared to FH, and induction by cellular stress suggest FHv to have a role distinct from FH, for example in apoptosis or survival. However, the physiological significance of FHv requires further elucidation.
Resumo:
Many of the genes predisposing to highly penetrant colorectal cancer (CRC) syndromes, including hereditary non-polyposis colorectal cancer (MLH1, MSH2, MSH6, PMS2), familial adenomatous polyposis (APC), Peutz-Jeghers syndrome (LKB1), juvenile polyposis (SMAD4, BMPR1A), MYH-associated polyposis (MYH), and Cowden syndrome (PTEN) have already been discovered. Identification of these genes has allowed a more precise classification of the hereditary CRC syndromes and provided a means for predictive genetic testing and surveillance. Some of the genes are also involved in sporadic cancer forms, and therefore the investigation of the rare CRC syndromes has been a breakthrough for general cancer research. Despite the accumulating knowledge on hereditary cancer syndromes, a significant number of familial CRCs remain molecularly unexplained after genetic testing, reflecting the possibility of other predisposing genes or existence of novel syndromes. Moreover, genetic variants conferring low-penetrance risk are still largely unknown. In this study, we examined the role of some new high- and low-penetrance alleles on CRC predisposition. We identified disease causing MYH mutations in a subset (9%) of patients with APC and AXIN2 mutation negative adenomatous polyposis. Due to differences in the pattern of inheritance and clinical manifestation, screening for mutations in MYH is beneficial in view of genetic counselling and surveillance. A novel functionally deficient MYH founder mutation A459D was identified in the Finnish population, and this finding had immediate clinical implications for genetic counselling of at risk families. Many patients with hamartomatous polyposis remain without molecular diagnosis due to atypical phenotypes. We therefore sought to classify 49 patients with unexplained hamartomatous or hyperplastic/mixed polyposis by extensive molecular analyses of PTEN, LKB1, BMPR1A, SMAD4, ENG, BRAF, MYH, and BHD along with revision of polyp histology. Mutations were identified in 11/49 (22%) of the patients. In 6 cases the molecular diagnosis was re-classified guiding surveillance and decisions for prophylactic surgery. Re-evaluation of polyp histology with subsequent more accurate selection of candidate gene analyses is beneficial and can be recommended for patients with unexplained polyposis. Furthermore, germline mutations in ENG underlying juvenile polyposis were described for the first time, characterizing a possible novel genetically defined form of hereditary CRC. Association analyses on two putative low-penetrance alleles, NOD2 3020insC and MDM2 SNP309 were performed in a population-based series of 1042 Finnish CRC patients and in cancer-free controls. In contrast to previous results, NOD2 3020insC did not associate with CRC or age at disease onset in the Finnish population. These data suggest that NOD2 3020insC alone might not be sufficient for CRC predisposition. MDM2 SNP309 was as common in the CRC cohort as in the healthy controls. Interesting trends, however, were observed, which after correction for multiple testing did not reach statistical significance. SNP309 was more common in female CRC patients and a trend towards an earlier age at disease onset was observed in women with SNP309. Subsequent studies have supported this observation and SNP309 could affect gender- or hormone-related tumorigenesis. Finally, a large-scale unbiased effort was designed to characterize the complete mutatome of CRC with microsatellite instability (MSI). Using an approach combining expression microarray and genome database searches, we were able to identify putative MSI target genes. Further characterization of one of the genes suggested that it might play a role also in microsatellite stable CRC and Peutz-Jeghers syndrome pathogenesis.
Resumo:
Background: Adenosine is a potent sleep-promoting substance, and one of its targets is the basal forebrain. Fairly little is known about its mechanism of action in the basal forebrain and about the receptor subtype mediating its regulating effects on sleep homeostasis. Homeostatic deficiency might be one of the causes of the profoundly disturbed sleep pattern in major depressive disorder, which could explain the reduced amounts of delta-activity-rich stages 3 and 4. Since major depression has a relatively high heritability, and on the other hand adenosine regulates sleep homeostasis and might also be involved in mood modulation, adenosine-related genes should be considered for their possible contribution to a predisposition for depression and disturbed sleep in humans. Depression is a complex disorder likely involving the abnormal functioning of several genes. Novel target genes which could serve as the possible common substrates for depression and comorbid disturbed sleep should be identified. In this way specific brain areas related to sleep regulation should be studied by using animal model of depression which represents more homogenous phenotype as compared to humans. It is also important to study these brain areas during the development of depressive-like features to understand how early changes could facilitate pathophysiological changes in depression. Aims and methods: We aimed to find out whether, in the basal forebrain, adenosine induces recovery non-rapid eye movement (NREM) sleep after prolonged waking through the A1 or/and A2A receptor subtype. A1 and A2A receptor antagonists were perfused into the rat basal forebrain during 3 h of sleep deprivation, and the amount of NREM sleep and delta power during recovery NREM sleep were analyzed. We then explored whether polymorphisms in genes related to the metabolism, transport and signaling of adenosine could predispose to depression accompanied by signs of disturbed sleep. DNA from 1423 individuals representative of the Finnish population and including controls and cases with depression, depression accompanied by early morning awakenings and depression accompanied by fatigue, was used in the study to investigate the possible association between polymorphisms from adenosine-related genes and cases. Finally to find common molecular substrates of depression and disturbed sleep, gene expression changes were investigated in specific brain areas in the rat clomipramine model of depression. We focused on the basal forebrain of 3-week old clomipramine-treated rats which develop depressive-like symptoms later in adulthood and on the hypothalamus of adult female clomipramine-treated rats. Results: Blocking of the A1 receptor during sleep deprivation resulted in a reduction of the recovery NREM sleep amount and delta power, whereas A2A receptor antagonism had no effect. Polymorphisms in adenosine-related genes SLC29A3 (equilibrative nucleoside transporter type 3) in women and SLC28A1 (concentrative nucleoside transporter type 1) in men associated with depression alone as well as when accompanied by early morning awakenings and fatigue. In Study III the basal forebrain of postnatal rats treated with clomipramine displayed disturbances in gamma-aminobutyric acid (GABA) receptor type A signaling, in synaptic transmission and possible epigenetic changes. CREB1 was identified as a common transcription denominator which also mediates epigenetic regulation. In the hypothalamus the major changes included the expression of genes in GABA-A receptor pathway, K+ channel-related, glutamatergic and mitochondrial genes, as well as an overexpression of genes related to RNA and mRNA processing. Conclusions: Adenosine plays an important role in sleep homeostasis by promoting recovery NREM sleep via the A1 receptor subtype in the basal forebrain. Also adenosine levels might contribute to the risk of depression with disturbed sleep, since the genes encoding nucleoside transporters showed the strongest associations with depression alone and when accompanied by signs of disturbed sleep in both women and men. Sleep and mood abnormalities in major depressive disorder could be a consequence of multiple changes at the transcriptional level, GABA-A receptor signaling and synaptic transmission in sleep-related basal forebrain and the hypothalamus.
Resumo:
Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited disorder characterized by age of onset at 6-15 years, stimulus-sensitive myoclonus, tonic-clonic epileptic seizures and a progressive course. Mutations in the cystatin B (CSTB) gene underlie EPM1. The most common mutation underlying EPM1 is a dodecamer repeat expansion in the promoter region of CSTB. In addition, nine other mutations have been identified. CSTB, a cysteine protease inhibitor, is a ubiquitously expressed inhibitor of cathepsins, but its physiological function is unknown. The purpose of this study was to investigate CSTB gene expression and CSTB protein function in normal and pathological conditions. The basal CSTB promoter was mapped and characterized using different promoter-luciferase gene constructs. The binding activity of transcription factors to one ARE half, five Sp1 and four AP1 sites in the CSTB promoter was demonstrated. The CSTB promoter activity was clearly decreased using a CSTB promoter with "premutation" repeat expansions and in individuals with alike expansions. The expression of CSTB mRNA and protein was markedly reduced in patient cells. The endogenous CSTB protein localized to the nucleus, cytoplasm and lysosomes, and in differentiated cells merely to the cytoplasm. This suggests that the subcellular distribution of CSTB is dependent on the differentation status of the cells. The proteins representing patient missense mutations failed to associate with lysosomes, implying the importance of the lysosomal association for the proper physiological function of CSTB. Several alternatively spliced CSTB isoforms were identified. Of these CSTB2 was widely expressed with very low levels whereas the other alternatively spliced forms seemed to have limited tissue expression. In patients CSTB2 expression was reduced similarly to that of CSTB. The physiological relevance of CSTB alternative splicing remains unknown. The mouse Cstb transcript was shown to be present in all embryonic stages and adult tissues examined. The expression was highest at embryonic day 7 and in thymus, as well as in postnatal brain in the cortex, caudate putamen, thalamus, hippocampus, and in the Purkinje cell layer of the cerebellum. Our data implies that CSTB expression is tightly temporally and spatially regulated. The data presented in my thesis lay the basis for further understanding of the role of CSTB in health and disease.
Resumo:
Cancer is a leading cause of death worldwide and the total number of cancer cases continues to increase. Many cancers, for example sinonasal cancer and lung cancer, have clear external risk factors and so are potentially preventable. The occurrence of sinonasal cancer is strongly associated with wood dust exposure and the main risk factor for lung cancer is tobacco smoking. Although the molecular mechanisms involved in lung carcinogenesis have been widely studied, very little is known about the molecular changes leading to sinonasal cancer. In this work, mutations in the tumour suppressor TP53 gene in cases of sinonasal cancer and lung cancer and the associations of these mutations with exposure factors were studied. In addition, another important mechanism in many cancers, inflammation, was explored by analyzing the expression of the inflammation related enzyme, COX-2, in sinonasal cancer. The results demonstrate that TP53 mutations are frequent in sinonasal cancer and lung cancer and in both cancers they are associated with exposure. In sinonasal cancer, the occurrence of TP53 mutation significantly increased in relation to long duration and high level of exposure to wood dust. Smoking was not associated with the overall occurrence of the TP53 mutation in sinonasal cancer, but was associated with multiple TP53 mutations. Furthermore, inflammation appears to play a part in sinonasal carcinogenesis as indicated by our results showing that the expression of COX-2 was associated with adenocarcinoma type of tumours, wood dust exposure and non-smoking. In lung cancer, we detected statistically significant associations between TP53 mutations and duration of smoking, gender and histology. We also found that patients with a tumour carrying a G to T transversion, a mutation commonly found in association with tobacco smoking, had a high level of smoking-related bulky DNA adducts in their non-tumorous lung tissue. Altogether, the information on molecular changes in exposure induced cancers adds to the observations from epidemiological studies and helps to understand the role and impact of different etiological factors, which in turn can be beneficial for risk assessment and prevention.
Resumo:
Migraine is a highly prevalent disease, and despite several important breakthroughs there are still a many questions unanswered in the clinical, genetic and pathophysiological aspects of migraine research. Migraine has been linked to several other diseases such as epilepsy and stroke, but there are still unsolved issues concerning the true nature of these associations. Three genes predisposing to hemiplegic migraine and several loci associated to migraine have been identified, but so far no genes responsible for common forms of migraine have been recognized. Triptans have provided an important step in migraine treatment, but their usefulness in rare forms of migraine have been controversial. The Finnish Migraine Gene Project (FMGP) includes more than 1600 families and 7500 individuals. We evaluated comorbidity from 1000 consecutive subjects in the FMGP. To search for novel loci, we performed a genome-wide linkage scan in 36 families with high prevalences of migraine with visual aura. We collected 76 subjects from the FMGP who suffer from hemiplegic migraine and have used triptans. Finally, to study possible links between stroke and migraine we evaluated the prevalence of migraine in subjects with cervical artery dissection (CAD) and healthy controls. Migraine was associated with increased prevalence of allergy, hypotension and psychiatric diseases. Additionally, men suffering from migraine with aura had increased prevalence of epilepsy and stroke. Further evidence of association between migraine and epilepsy was found in our linkage study. The parametric two-point linkage analysis showed significant evidence of linkage between migraine aura and a locus on 9q21-q22. Interestingly, the same locus has been associated with occipitotemporal epilepsy. CAD seems to be a migraine risk factor, and therefore a link between stroke and migraine. Notably, CAD seems to alleviate migraine activity further indicating the association between these two conditions. Despite the contraindications of triptans, it seems that they are safe and effective in the abortive treatment of hemiplegic migraine.
Resumo:
Age-related macular degeneration (AMD; OMIM # 603075) is an eye disease of the elderly, signs of which appear after the age of 50. In the Western world it is a leading cause of permanent visual loss with a prevalence of 8.5% in persons under 54 years of age and of 37% in persons over 75 years of age. Early forms of AMD may be asymptomatic, but in the late forms usually a central scotoma in the visual field follows severely complicating daily tasks. Smoking, age, and genetic predisposition are known risk factors for AMD. Until recently no true susceptibility genes had been identified though the composition of drusen deposits, the hallmarks of AMD, has suggested that the complement system might play a role in the pathogenesis of AMD. When four groups reported in March 2005, that, on chromosome 1q32, a Y402H variant in the complement factor H (CFH) gene confers risk for AMD in independent Caucasian samples, a new period in the field of genetic research of AMD started. CFH is a key regulator of the complement system. Thus, it is logical to speculate, that it plays a role in the pathogenesis of AMD. We performed a case-control association study to analyse whether the CFH Y402H variant contain a risk for AMD in the Finnish population. Although the population of Finland represents a genetic isolate, the CFH Y402H polymorphism was associated with AMD also in our patient sample with similar risk allele frequencies as in the other Caucasian populations. We further evaluated the effects of this variant, but no association between lesion subtype (predominantly classic, minimally classic or occult lesion) or lesion size of neovascular AMD and the CFH Y402H variant was detected. Neither did the variant have an effect on the photodynamic therapy (PDT) outcome. The patients that respond to PDT carried the risk genotype as frequently as those who did not respond, and no difference was found in the number of PDT sessions needed in patients with or without the risk genotypes of CFH Y402H. Functional analyses, however, showed that the binding of C-reactive protein (CRP) to CFH was significantly reduced in patients with the risk genotype of Y402H. In the past two years, the LOC387715/ high-temperature requirement factor A1 (HTRA1) locus on 10q26 has also been repeatedly associated with AMD in several populations. The recent discovery of the LOC387715 protein on the mitochondrial outer membrane suggests that the LOC387715 gene, not HTRA1, is the true predisposing gene in this region, although its biological function is still unknown. In our Finnish patient material, patients with AMD carried the A69S risk genotype of LOC387715 more frequently than the controls. Also, for the first time, an interaction between the CFH Y402H and the LOC387715 A69S variants was found. The most recently detected susceptibilty gene of AMD, the complement component 3 (C3) gene, encodes the central component of the complement system, C3. In our Finnish sample, an additive gene effect for the C3 locus was detected, though weaker than the effects for the two main loci, CFH and LOC387715. Instead, the hemicentin-1 or the elongation of very long chain fatty acids-like 4 genes that have also been suggested as candidate genes for AMD did not carry a risk for AMD in the Finnish population. This was the first series of molecular genetic study of AMD in Finland. We showed that two common risk variants, CFH Y402H and LOC387715 A69S, represent a high risk of AMD also in the isolated Finnish population, and furthermore, that they had a statistical interaction. It was demonstrated that the CFH Y402H risk genotype affects the binding of CFH to CRP thus suggesting that complement indeed plays an important role in the pathogenesis of AMD.