17 resultados para Low-density Lipoproteins

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asymmetrical flow field-flow fractionation (AsFlFFF) was constructed, and its applicability to industrial, biochemical, and pharmaceutical applications was studied. The effect of several parameters, such as pH, ionic strength, temperature and the reactants mixing ratios on the particle sizes, molar masses, and the formation of aggregates of macromolecules was determined by AsFlFFF. In the case of industrial application AsFlFFF proved to be a valuable tool in the characterization of the hydrodynamic particle sizes, molar masses and phase transition behavior of various poly(N-isopropylacrylamide) (PNIPAM) polymers as a function of viscosity and phase transition temperatures. The effect of sodium chloride salt and the molar ratio of cationic and anionic polyelectrolytes on the hydrodynamic particle sizes of poly (methacryloxyethyl trimethylammonium chloride) and poly (ethylene oxide)-block-poly (sodium methacrylate) and their complexes were studied. The particle sizes of PNIPAM polymers, and polyelectrolyte complexes measured by AsFlFFF were in agreement with those obtained by dynamic light scattering. The molar masses of PNIPAM polymers obtained by AsFlFFF and size exclusion chromatography agreed also well. In addition, AsFlFFF proved to be a practical technique in thermo responsive behavior studies of polymers at temperatures up to about 50 oC. The suitability of AsFlFFF for biological, biomedical, and pharmaceutical applications was proved, upon studying the lipid-protein/peptide interactions, and the stability of liposomes at different temperatures. AsFlFFF was applied to the studies on the hydrophobic and electrostatic interactions between cytochrome c (a basic peripheral protein) and anionic lipid, and oleic acid, and sodium dodecyl sulphate surfactant. A miniaturized AsFlFFF constructed in this study was exploited in the elucidation of the effect of copper (II), pH, ionic strength, and vortexing on the particle sizes of low-density lipoproteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma phospholipid transfer protein (PLTP) plays a crucial role in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT). It mediates the generation of pre-beta-HDL particles, enhances the cholesterol efflux from peripheral cells to pre-beta-HDL, and metabolically maintains the plasma HDL levels by facilitating the transfer of post-lipolytic surface remnants of triglyceride-rich lipoproteins to HDL. In addition to the antiatherogenic properties, recent findings indicate that PLTP has also proatherogenic characteristics, and that these opposite characteristics of PLTP are dependent on the site of PLTP expression and action. In human plasma, PLTP exists in a high-activity (HA-PLTP) and a low-activity form (LA-PLTP), which are associated with macromolecular complexes of different size and composition. The aims of this thesis were to isolate the two PLTP forms from human plasma, to characterize the molecular complexes in which the HA- and LA-PLTP reside, and to study the interactions of the PLTP forms with apolipoproteins (apo) and the ability of apolipoproteins to regulate PLTP activity. In addition, we aimed to study the distribution of the two PLTP forms in a Finnish population sample as well as to find possible regulatory factors for PLTP by investigating the influence of lipid and glucose metabolism on the balance between the HA- and LA-PLTP. For these purposes, an enzyme-linked immunosorbent assay (ELISA) capable of determining the serum total PLTP concentration and quantitating the two PLTP forms separately was developed. In this thesis, it was demonstrated that the HA-PLTP isolated from human plasma copurified with apoE, whereas the LA-PLTP formed a complex with apoA-I. The separation of these two PLTP forms was carried out by a dextran sulfate (DxSO4)-CaCl2 precipitation of plasma samples before the mass determination. A similar immunoreactivity of the two PLTP forms in the ELISA could be reached after a partial sample denaturation by SDS. Among normolipidemic Finnish individuals, the mean PLTP mass was 6.6 +/- 1.5 mg/l and the mean PLTP activity 6.6 +/- 1.7 umol/ml/h. Of the serum PLTP concentration, almost 50% represented HA-PLTP. The results indicate that plasma HDL levels could regulate PLTP concentration, while PLTP activity could be regulated by plasma triglyceride-rich very low-density lipoprotein (VLDL) concentration. Furthermore, new evidence is presented that PLTP could also play a role in glucose metabolism. Finally, both PLTP forms were found to interact with apoA-I, apoA-IV, and apoE. In addition, both apoE and apoA-IV, but not apoA-I, were capable of activating the LA-PLTP. These findings suggest that the distribution of the HA- and LA-PLTP in human plasma is subject to dynamic regulation by apolipoproteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reverse cholesterol transport (RCT) is an important function of high-density lipoproteins (HDL) in the protection of atherosclerosis. RCT is the process by which HDL stimulates cholesterol removal from peripheral cells and transports it to the liver for excretion. Premenopausal women have a reduced risk for atherosclerosis compared to age-matched men and there exists a positive correlation for serum 17β-estradiol (E2) and HDL levels in premenopausal women supporting the role of E2 in atherosclerosis prevention. In premenopausal women, E2 associates with HDL as E2 fatty acyl esters. Discovery of the cellular targets, metabolism, and assessment of the macrophage cholesterol efflux potential of these HDL-associated E2 fatty acyl esters were the major objectives of this thesis (study I, III, and IV). Soy phytoestrogens, which are related to E2 in both structure and function, have been proposed to be protective against atherosclerosis but the evidence to support these claims is conflicting. Therefore, another objective of this thesis was to assess the ability of serum from postmenopausal women, treated with isoflavone supplements (compared to placebo), to promote macrophage cholesterol efflux (study II). The scope of this thesis was to cover the roles that HDL-associated E2 fatty acyl esters have in the cellular aspects of RCT and to determine if soy isoflavones can also influence RCT mechanisms. SR-BI was a pivotal cellular receptor, responsible for hepatic and macrophage uptake and macrophage cholesterol efflux potential of HDL-associated E2 fatty acyl esters. Functional SR-BI was also critical for proper LCAT esterification activity which could impact HDL-associated E2 fatty acyl ester assembly and its function. In hepatic cells, LDL receptors also contributed to HDL-associated E2 fatty acyl esters uptake and in macrophage cells, estrogen receptors (ERs) were necessary for both HDL-associated E2 ester-specific uptake and cholesterol efflux potential. HDL-containing E2 fatty acyl esters (E2-FAE) stimulated enhanced cholesterol efflux compared to male HDL (which are deficient in E2) demonstrating the importance of the E2 ester in this process. To support this, premenopausal female HDL, which naturally contains E2, showed greater macrophage cholesterol efflux compared to males. Additionally, hepatic and macrophage cells hydrolyzed the HDL-associated E2 fatty acyl ester into unesterified E2. This could have important biological ramifications because E2, not the esterified form, has potent cellular effects which may influence RCT mechanisms. Lastly, soy isoflavone supplementation in postmenopausal women did not modulate ABCA1-specific macrophage cholesterol efflux but did increase production of plasma pre-β HDL levels, a subclass of HDL. Therefore, the impact of isoflavones on RCT and cardiovascular health needs to be further investigated. Taken as a whole, HDL-associated E2 fatty acyl esters from premenopausal women and soy phytoestrogen treatment in postmenopausal women may be important factors that increase the efficiency of RCT through cellular lipoprotein-related processes and may have direct implications on the cardiovascular health of women.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This doctoral thesis describes the development of a miniaturized capillary electrochromatography (CEC) technique suitable for the study of interactions between various nanodomains of biological importance. The particular focus of the study was low-density lipoprotein (LDL) particles and their interaction with components of the extracellular matrix (ECM). LDL transports cholesterol to the tissues through the blood circulation, but when the LDL level becomes too high the particles begin to permeate and accumulate in the arteries. Through binding sites on apolipoprotein B-100 (apoB-100), LDL interacts with components of the ECM, such as proteoglycans (PGs) and collagen, in what is considered the key mechanism in the retention of lipoproteins and onset of atherosclerosis. Hydrolytic enzymes and oxidizing agents in the ECM may later successively degrade the LDL surface. Metabolic diseases such as diabetes may provoke damage of the ECM structure through the non-enzymatic reaction of glucose with collagen. In this work, fused silica capillaries of 50 micrometer i.d. were successfully coated with LDL and collagen, and steroids and apoB-100 peptide fragments were introduced as model compounds for interaction studies. The LDL coating was modified with copper sulphate or hydrolytic enzymes, and the interactions of steroids with the native and oxidized lipoproteins were studied. Lipids were also removed from the LDL particle coating leaving behind an apoB-100 surface for further studies. The development of collagen and collagen decorin coatings was helpful in the elucidation of the interactions of apoB-100 peptide fragments with the primary ECM component, collagen. Furthermore, the collagen I coating provided a good platform for glycation studies and for clarification of LDL interactions with native and modified collagen. All methods developed are inexpensive, requiring just small amounts of biomaterial. Moreover, the experimental conditions in CEC are easily modified, and the analyses can be carried out in a reasonable time frame. Other techniques were employed to support and complement the CEC studies. Scanning electron microscopy and atomic force microscopy provided crucial visual information about the native and modified coatings. Asymmetrical flow field-flow fractionation enabled size measurements of the modified lipoproteins. Finally, the CEC results were exploited to develop new sensor chips for a continuous flow quartz crystal microbalance technique, which provided complementary information about LDL ECM interactions. This thesis demonstrates the potential of CEC as a valuable and flexible technique for surface interaction studies. Further, CEC can serve as a novel microreactor for the in situ modification of LDL and collagen coatings. The coatings developed in this study provide useful platforms for a diversity of future investigations on biological nanodomains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background. Cardiovascular disease (CVD) remains the most serious threat to life and health in industrialized countries. Atherosclerosis is the main underlying pathology associated with CVD, in particular coronary artery disease (CAD), ischaemic stroke, and peripheral arterial disease. Risk factors play an important role in initiating and accelerating the complex process of atherosclerosis. Most studies of risk factors have focused on the presence or absence of clinically defined CVD. Less is known about the determinants of the severity and extent of atherosclerosis in symptomatic patients. Aims. To clarify the association between coronary and carotid artery atherosclerosis, and to study the determinants associated with these abnormalities with special regard to novel cardiovascular risk factors. Subjects and methods. Quantitative coronary angiography (QCA) and B-mode ultrasound were used to assess coronary and carotid artery atherosclerosis in 108 patients with clinically suspected CAD referred for elective coronary angiography. To evaluate anatomic severity and extent of CAD, several QCA parameters were incorporated into indexes. These measurements reflected CAD severity, extent, and overall atheroma burden and were calculated for the entire coronary tree and separately for different coronary segments (i.e., left main, proximal, mid, and distal segments). Maximum and mean intima-media thickness (IMT) values of carotid arteries were measured and expressed as mean aggregate values. Furthermore, the study design included extensive fasting blood samples, oral glucose tolerance test, and an oral fat-load test to be performed in each participant. Results. Maximum and mean IMT values were significantly correlated with CAD severity, extent, and atheroma burden. There was heterogeneity in associations between IMT and CAD indexes according to anatomical location of CAD. Maximum and mean IMT values, respectively, were correlated with QCA indexes for mid and distal segments but not with the proximal segments of coronary vessels. The values of paraoxonase-1 (PON1) activity and concentration, respectively, were lower in subjects with significant CAD and there was a significant relationship between PON1 activity and concentration and coronary atherosclerosis assessed by QCA. PON1 activity was a significant determinant of severity of CAD independently of HDL cholesterol. Neither PON1 activity nor concentration was associated with carotid IMT. The concentration of triglycerides (TGs), triglyceride-rich lipoproteins (TRLs), oxidized LDL (oxLDL), and the cholesterol content of remnant lipoprotein particle (RLP-C) were significantly increased at 6 hours after intake of an oral fatty meal as compared with fasting values. The mean peak size of LDL remained unchanged 6 hours after the test meal. The correlations between total TGs, TRLs, and RLP-C in fasting and postprandial state were highly significant. RLP-C correlated with oxLDL both in fasting and in fed state and inversely with LDL size. In multivariate analysis oxLDL was a determinant of severity and extent of CAD. Neither total TGs, TRLs, oxLDL, nor LDL size were linked to carotid atherosclerosis. Insulin resistance (IR) was associated with an increased severity and extent of coronary atherosclerosis and seemed to be a stronger predictor of coronary atherosclerosis in the distal parts of the coronary tree than in the proximal and mid parts. In the multivariate analysis IR was a significant predictor of the severity of CAD. IR did not correlate with carotid IMT. Maximum and mean carotid IMT were higher in patients with the apoE4 phenotype compared with subjects with the apoE3 phenotype. Likewise, patients with the apoE4 phenotype had a more severe and extensive CAD than individuals with the apoE3 phenotype. Conclusions. 1) There is an association between carotid IMT and the severity and extent of CAD. Carotid IMT seems to be a weaker predictor of coronary atherosclerosis in the proximal parts of the coronary tree than in the mid and distal parts. 2) PON1 activity has an important role in the pathogenesis of coronary atherosclerosis. More importantly, the study illustrates how the protective role of HDL could be modulated by its components such that equivalent serum concentrations of HDL cholesterol may not equate with an equivalent, potential protective capacity. 3) RLP-C in the fasting state is a good marker of postprandial TRLs. Circulating oxLDL increases in CAD patients postprandially. The highly significant positive correlation between postprandial TRLs and postprandial oxLDL suggests that the postprandial state creates oxidative stress. Our findings emphasize the fundamental role of LDL oxidation in the development of atherosclerosis even after inclusion of conventional CAD risk factors. 4) Disturbances in glucose metabolism are crucial in the pathogenesis of coronary atherosclerosis. In fact, subjects with IR are comparable with diabetic subjects in terms of severity and extent of CAD. 5) ApoE polymorphism is involved in the susceptibility to both carotid and coronary atherosclerosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In atherosclerosis, cholesterol accumulates in the vessel wall, mainly in the form of modified low-density lipoprotein (LDL). Macrophages of the vessel wall scavenge cholesterol, which leads to formation of lipid-laden foam cells. High plasma levels of high-density lipoprotein (HDL) protect against atherosclerosis, as HDL particles can remove peripheral cholesterol and transport it to the liver for excretion in a process called reverse cholesterol transport (RCT). Phospholipid transfer protein (PLTP) remodels HDL particles in the circulation, generating prebeta-HDL and large fused HDL particles. In addition, PLTP maintains plasma HDL levels by facilitating the transfer of post-lipolytic surface remnants of triglyceride-rich lipoproteins to HDL. Most of the cholesteryl ester transfer protein (CETP) in plasma is bound to HDL particles and CETP is also involved in the remodeling of HDL particles. CETP enhances the heteroexchange of cholesteryl esters in HDL particles for triglycerides in LDL and very low-density lipoprotein (VLDL). The aim of this thesis project was to study the importance of endogenous PLTP in the removal of cholesterol from macrophage foam cells by using macrophages derived from PLTP-deficient mice, determine the effect of macrophage-derived PLTP on the development of atherosclerosis by using bone marrow transplantation, and clarify the role of the two forms of PLTP, active and inactive, in the removal of cholesterol from the foam cells. In addition, the ability of CETP to protect HDL against the action of chymase was studied. Finally, cholesterol efflux potential of sera obtained from the study subjects was compared. The absence of PLTP in macrophages derived from PLTP-deficient mice decreased cholesterol efflux mediated by ATP-binding cassette transporter A1. The bone marrow transplantation studies showed that selective deficiency of PLTP in macrophages decreased the size of atherosclerotic lesions and caused major changes in serum lipoprotein levels. It was further demonstrated that the active form of PLTP can enhance cholesterol efflux from macrophage foam cells through generation of prebeta-HDL and large fused HDL particles enriched with apoE and phospholipids. Also CETP may enhance the RCT process, as association of CETP with reconstituted HDL particles prevented chymase-dependent proteolysis of these particles and preserved their cholesterol efflux potential. Finally, serum from high-HDL subjects promoted more efficient cholesterol efflux than did serum derived from low-HDL subjects which was most probably due to differences in the distribution of HDL subpopulations in low-HDL and high-HDL subjects. These studies described in this thesis contribute to the understanding of the PLTP/CETP-associated mechanisms underlying RCT.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tibolone, a synthetic steroid, is effective in the treatment of postmenopausal symptoms. Its cardiovascular safety profile has been questioned, because tibolone reduces the levels of high-density lipoprotein (HDL) cholesterol. Soy-derived isoflavones may offer health benefits, particularly as regards lipids and also other cardiovascular disease (CVD) risk factors. The soy-isoflavone metabolite equol is thought to be the key as regards soy-related beneficial effects. We studied the effects of soy supplementation on various CVD risk factors in postmenopausal monkeys and postmenopausal women using tibolone. In addition, the impact of equol production capability was studied. A total of 18 monkeys received casein/lactalbumin (C/L) (placebo), tibolone, soy (a woman s equivalent dose of 138 mg of isoflavones), or soy with tibolone in a randomized order for 14 weeks periods, and there was a 4-week washout (C/L) in between treatments. Postmenopausal women using tibolone (N=110) were screened by means of a one-week soy challenge to find 20 women with equol production capability (4-fold elevation from baseline equol level) and 20 control women, and treated in a randomized cross-over trial with a soy powder (52 g of soy protein containing 112 mg of isoflavones) or placebo for 8 weeks. Before and after the treatments lipids and lipoproteins were assessed in both monkeys and women. In addition, blood pressure, arterial stiffness, endothelial function, sex steroids, sex hormone-binding globulin (SHBG), and vascular inflammation markers were assessed. A 14% increase in plasma low-density lipoprotein (LDL) + very low-density lipoprotein (VLDL) cholesterol was observed in tibolone-treated monkeys vs. placebo. Soy treatment resulted in a 18% decrease in LDL+VLDL cholesterol, and concomitant supplementation with tibolone did not negate the LDL+VLDL cholesterol-lowering effect of soy. A 30% increase in HDL cholesterol was observed in monkeys fed with soy, whereas HDL cholesterol levels were reduced (48%) after tibolone. Interestingly, Soy+Tibolone diet conserved HDL cholesterol levels. Tibolone alone increased the total cholesterol (TC):HDL cholesterol ratio, whereas it was reduced by Soy or Soy+Tibolone. In postmenopausal women using tibolone, reductions in the levels of total cholesterol and LDL cholesterol were seen after soy supplementation compared with placebo, but there was no effect on HDL cholesterol, blood pressure, arterial stiffness or endothelial function. Soy supplementation decreased the levels of estrone in equol producers, and those of testosterone in the entire study population. No changes were seen in the levels of androstenedione, dehydroepiandrosterone sulfate, or SHBG. The levels of vascular cell adhesion molecule-1 increased, and platelet-selectin decreased after soy treatment, whereas C-reactive protein and intercellular adhesion molecule-1 remained unchanged. At baseline and unrelated to soy treatment, equol producers had lower systolic, diastolic and mean arterial pressures, less arterial stiffness and better endothelial function than non-producers. To conclude, soy supplementation reversed the tibolone-induced fall in HDL cholesterol in postmenopausal monkeys, but this effect was not seen in women taking tibolone. Equol production capability was associated with beneficial cardiovascular changes and thus, this characteristic may offer cardiovascular benefits, at least in women using tibolone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dyslipidaemia, a major risk factor of cardiovascular disease (CVD), is prevalent not only in diabetic patients but also in individuals with impaired glucose tolerance (IGT) or impaired fasting glucose (IFG). The aims of this study were: 1) to investigate lipid levels in relation to glucose in European (Study I) and Asian (Study II) populations without a prior history of diabetes; 2) to study the ethnic difference in lipid profiles controlling for glucose levels (Study III); 3) to estimate the relative risk for cardiovascular mortality (Study IV) and morbidity (Study V) associated with dyslipidaemia in individuals with different glucose tolerance status. Data of 15 European cohorts with 19 476 subjects (I and III) and 13 Asian cohorts with 19 763 individuals (II and III) from 21 countries aged 25-89 years, without a prior history of diabetes at enrollment, representing Asian Indian, Chinese, European, Japanese and Mauritian Indian, were compared. The lipid-CVD relationship was studied in 14 European cohorts of 17 763 men and women which provided with follow-up data on vital status, with 871 CVD deaths occurred during the average 10-year follow-up (IV). The impact of dyslipidaemia on incidence of coronary heart disease (CHD) in persons with different glucose categories (V) was further evaluated in 6 European studies, with 9087 individuals free of CHD at baseline and 457 developed CHD during follow-up. Z-scores of each lipid component were used in the data analysis (I, II, IV and V) to reduce the differences in methodology between studies. Analyses of cardiovascular mortality and morbidity were performed using Cox proportional hazards regression analysis adjusting for potential confounding factors. Within each glucose category, fasting plasma glucose (FPG) levels were correlated with increasing levels of triglycerides (TG), total cholesterol (TC), TC to high-density lipoprotein (HDL) ratio and non-HDL cholesterol (non-HDL-C) (p<0.05 in most of the ethnic groups) and inversely associated with HDL-C (p<0.05 in some, but not all, of the populations). The association of lipids with 2-h plasma glucose (2hPG) followed a similar pattern as that for the FPG, except the stronger association of HDL-C with 2hPG. Compared with Central & Northern (C & N) Europeans, multivariable adjusted odd ratios (95% CIs) for having low HDL-C were 4.74 (4.19-5.37), 5.05 (3.88-6.56), 3.07 (2.15-4.40) and 2.37 (1.67-3.35) in Asian Indian men but 0.12 (0.09-0.16), 0.07 (0.04-0.13), 0.11 (0.07-0.20) and 0.16 (0.08-0.32) in Chinese men who had normoglycaemia, prediabetes, undiagnosed and diagnosed diabetes, respectively. Similar results were obtained for women. The prevalence of low HDL-C remained higher in Asian Indians than in others even in individuals with LDL-C < 3 mmol/l. Dyslipidaemia was associated with increased CVD mortality or CHD incidence in individuals with isolated fasting hyperglycaemia or IFG, but not in those with isolated post-load hyperglycaemia or IGT. In conclusion, hyperglycaemia is associated with adverse lipid profiles in Europeans and Asians without a prior history of diabetes. There are distinct patterns of lipid profiles associated with ethnicity regardless of the glucose levels, suggesting that ethnic-specific strategies and guidelines on risk assessment and prevention of CVD are required. Dyslipidaemia predicts CVD in either diabetic or non-diabetic individuals defined based on the fasting glucose criteria, but not on the 2-hour criteria. The findings may imply considering different management strategies in people with fasting or post-load hyperglycaemia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cardiovascular diseases (CVDs) are the leading cause of mortality in the world. Studies of the impact of single nutrients on the risk for CVD have often provided inconclusive results, and recent research in nutritional epidemiology with a more holistic whole-diet approach has proven fruitful. Moreover, dietary habits in childhood and adolescence may play a role in later health and disease, either independently or by tracking into adulthood. The main aims of this study were to find childhood and adulthood determinants of adulthood diet, to identify dietary patterns present among the study population and to study the associations between long-term food choices and cardiovascular health in young Finnish adults. The study is a part of the multidisciplinary Cardiovascular Risk in Young Finns study, which is an ongoing, prospective cohort study with a 21-year follow-up. At baseline in 1980, the subjects were children and adolescents aged 3 to 18 years (n included in this study = 1768), and young adults aged 24 to 39 years at the latest follow-up study in 2001 (n = 1037). Food consumption and nutrient intakes were assessed with repeated 48-hour dietary recalls. Other determinations have included comprehensive risk factor assessments using blood tests, physical measurements and questionnaires. In the latest follow-up, ultrasound examinations were performed to study early atherosclerotic vascular changes. The average intakes showed substantial changes since 1980. Intakes of fat and saturated fat had decreased, whereas the consumption of fruits and vegetables had increased. Intake of fat and consumption of vegetables in childhood and physical activity in adulthood were important health behavioural determinants of adult diet. Additionally, a principal component analysis was conducted to identify major dietary patterns at each study point. A similar set of two major patterns was recognised throughout the study. The traditional dietary pattern positively correlated with the consumption of traditional Finnish foods, such as rye, potatoes, milk, butter, sausages and coffee, and negatively correlated with fruit, berries and dairy products other than milk. This type of diet was independently associated with several risk factors of CVD, such as total and low-density lipoprotein cholesterol, apolipoprotein B and C-reactive protein concentrations among both genders, as well as with systolic blood pressure and insulin levels among women. The traditional pattern was also independently associated with intima media thickness (IMT), a subclinical predictor of CVD, in men but not in women. The health-conscious pattern, predominant among female subjects, non-smokers and urbanites, was characterised by more health-conscious food choices such as vegetables, legumes and nuts, tea, rye, fish, cheese and other dairy products, as well as by the consumption of alcoholic beverages. This pattern was inversely, but less strongly, associated with cardiovascular risk factors. Tracking of the dietary pattern scores was observed, particularly among subjects who were adolescents at baseline. Moreover, a long-term high intake of protein concurrent with a low intake of fat was positively associated with IMT. These findings suggest that food behaviour and food choices are to some extent established as early as in childhood or adolescence and may significantly track into adulthood. Long-term adherence to traditional food choices seems to increase the risk for developing CVD, especially among men. Those with intentional or unintentional low fat diets, but with high intake of protein may also be at increased risk for CVD. The findings offer practical, food-based information on the relationship between diet and CVD and encourage further use of the whole-diet approach in epidemiological research. The results support earlier findings that long-term food choices play a role in the development of CVD. The apparent influence of childhood habits is important to bear in mind when planning educational strategies for the primary prevention of CVD. Further studies on food choices over the entire lifespan are needed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Kidney transplantation (Tx) is the treatment of choice for end stage renal disease. Immunosuppressive medications are given to prevent an immunological rejection of the transplant. However, immunosuppressive drugs increase e.g. the risk of infection, cancer or nephrotoxicity. A major genetic contributors to immunological acceptance of the graft are human leukocyte antigen (HLA) genes. Also other non-HLA gene polymorphisms may predict the future risk of complications before Tx, possibly enabling individualised immunotherapy. Graft function after Tx is monitored using non-specific clinical symptoms and laboratory markers. The definitive diagnosis of graft rejection however relies on a biopsy of the graft. In the acute rejection (AR) diagnostics there is a need for an alternative to biopsy that would be an easily repeatable and simple method for regular use. Frequent surveillance of acute or subclinical rejection (SCR) may improve long-term function. In this thesis, associations between cytokine and thrombosis associated candidate genes and the outcome of kidney Tx were studied. Cytotoxic and co-stimulatory T lymphocyte molecule gene expression biomarkers for the diagnosis of the AR and the SCR were also investigated. We found that polymorphisms in the cytokine genes tumor necrosis factor and interleukin 10 (IL10) of the recipients were associated with AR. In addition, certain IL10 gene polymorphisms of the donors were associated with the incidence of cytomegalovirus infection and occurrence of later infection in a subpopulation of recipients. Further, polymorphisms in genes related to the risk of thrombosis and those of certain cytokines were not associated with the occurrence of thrombosis, infarction, AR or graft survival. In the study of biomarkers for AR, whole blood samples were prospectively collected from adult kidney Tx patients. With real-time quantitative PCR (RT-QPCR) gene expression quantities of CD154 and ICOS differentiated the patients with AR from those without, but not from the patients with other causes of graft dysfunction. Biomarkers for SCR were studied in paediatric kidney Tx patients. We used RT-QPCR to quantify the gene expression of immunological candidate genes in a low-density array format. In addition, we used RT-QPCR to validate the results of the microarray analysis. No gene marker differentiated patients with SCR from those without SCR. This research demonstrates the lack of robust markers among polymorphisms or biomarkers in investigated genes that could be included in routine analysis in a clinical laboratory. In genetic studies, kidney Tx can be regarded as a complex trait, i.e. several environmental and genetic factors may determine its outcome. A number of currently unknown genetic factors probably influence the results of Tx.