7 resultados para Local and Global Well-Posedness

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human activities extract and displace different substances and materials from the earth s crust, thus causing various environmental problems, such as climate change, acidification and eutrophication. As problems have become more complicated, more holistic measures that consider the origins and sources of pollutants have been called for. Industrial ecology is a field of science that forms a comprehensive framework for studying the interactions between the modern technological society and the environment. Industrial ecology considers humans and their technologies to be part of the natural environment, not separate from it. Industrial operations form natural systems that must also function as such within the constraints set by the biosphere. Industrial symbiosis (IS) is a central concept of industrial ecology. Industrial symbiosis studies look at the physical flows of materials and energy in local industrial systems. In an ideal IS, waste material and energy are exchanged by the actors of the system, thereby reducing the consumption of virgin material and energy inputs and the generation of waste and emissions. Companies are seen as part of the chains of suppliers and consumers that resemble those of natural ecosystems. The aim of this study was to analyse the environmental performance of an industrial symbiosis based on pulp and paper production, taking into account life cycle impacts as well. Life Cycle Assessment (LCA) is a tool for quantitatively and systematically evaluating the environmental aspects of a product, technology or service throughout its whole life cycle. Moreover, the Natural Step Sustainability Principles formed a conceptual framework for assessing the environmental performance of the case study symbiosis (Paper I). The environmental performance of the case study symbiosis was compared to four counterfactual reference scenarios in which the actors of the symbiosis operated on their own. The research methods used were process-based life cycle assessment (LCA) (Papers II and III) and hybrid LCA, which combines both process and input-output LCA (Paper IV). The results showed that the environmental impacts caused by the extraction and processing of the materials and the energy used by the symbiosis were considerable. If only the direct emissions and resource use of the symbiosis had been considered, less than half of the total environmental impacts of the system would have been taken into account. When the results were compared with the counterfactual reference scenarios, the net environmental impacts of the symbiosis were smaller than those of the reference scenarios. The reduction in environmental impacts was mainly due to changes in the way energy was produced. However, the results are sensitive to the way the reference scenarios are defined. LCA is a useful tool for assessing the overall environmental performance of industrial symbioses. It is recommended that in addition to the direct effects, the upstream impacts should be taken into account as well when assessing the environmental performance of industrial symbioses. Industrial symbiosis should be seen as part of the process of improving the environmental performance of a system. In some cases, it may be more efficient, from an environmental point of view, to focus on supply chain management instead.  

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While environmental variation is an ubiquitous phenomenon in the natural world which has for long been appreciated by the scientific community recent changes in global climatic conditions have begun to raise consciousness about the economical, political and sociological ramifications of global climate change. Climate warming has already resulted in documented changes in ecosystem functioning, with direct repercussions on ecosystem services. While predicting the influence of ecosystem changes on vital ecosystem services can be extremely difficult, knowledge of the organisation of ecological interactions within natural communities can help us better understand climate driven changes in ecosystems. The role of environmental variation as an agent mediating population extinctions is likely to become increasingly important in the future. In previous studies population extinction risk in stochastic environmental conditions has been tied to an interaction between population density dependence and the temporal autocorrelation of environmental fluctuations. When populations interact with each other, forming ecological communities, the response of such species assemblages to environmental stochasticity can depend, e.g., on trophic structure in the food web and the similarity in species-specific responses to environmental conditions. The results presented in this thesis indicate that variation in the correlation structure between species-specific environmental responses (environmental correlation) can have important qualitative and quantitative effects on community persistence and biomass stability in autocorrelated (coloured) environments. In addition, reddened environmental stochasticity and ecological drift processes (such as demographic stochasticity and dispersal limitation) have important implications for patterns in species relative abundances and community dynamics over time and space. Our understanding of patterns in biodiversity at local and global scale can be enhanced by considering the relevance of different drift processes for community organisation and dynamics. Although the results laid out in this thesis are based on mathematical simulation models, they can be valuable in planning effective empirical studies as well as in interpreting existing empirical results. Most of the metrics considered here are directly applicable to empirical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerosol particles have effect on climate, visibility, air quality and human health. However, the strength of which aerosol particles affect our everyday life is not well described or entirely understood. Therefore, investigations of different processes and phenomena including e.g. primary particle sources, initial steps of secondary particle formation and growth, significance of charged particles in particle formation, as well as redistribution mechanisms in the atmosphere are required. In this work sources, sinks and concentrations of air ions (charged molecules, cluster and particles) were investigated directly by measuring air molecule ionising components (i.e. radon activity concentrations and external radiation dose rates) and charged particle size distributions, as well as based on literature review. The obtained results gave comprehensive and valuable picture of the spatial and temporal variation of the air ion sources, sinks and concentrations to use as input parameters in local and global scale climate models. Newly developed air ion spectrometers (Airel Ltd.) offered a possibility to investigate atmospheric (charged) particle formation and growth at sub-3 nm sizes. Therefore, new visual classification schemes for charged particle formation events were developed, and a newly developed particle growth rate method was tested with over one year dataset. These data analysis methods have been widely utilised by other researchers since introducing them. This thesis resulted interesting characteristics of atmospheric particle formation and growth: e.g. particle growth may sometimes be suppressed before detection limit (~ 3 nm) of traditional aerosol instruments, particle formation may take place during daytime as well as in the evening, growth rates of sub-3 nm particles were quite constant throughout the year while growth rates of larger particles (3-20 nm in diameter) were higher during summer compared to winter. These observations were thought to be a consequence of availability of condensing vapours. The observations of this thesis offered new understanding of the particle formation in the atmosphere. However, the role of ions in particle formation, which is not well understood with current knowledge, requires further research in future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertexts are digital texts characterized by interactive hyperlinking and a fragmented textual organization. Increasingly prominent since the early 1990s, hypertexts have become a common text type both on the Internet and in a variety of other digital contexts. Although studied widely in disciplines like hypertext theory and media studies, formal linguistic approaches to hypertext continue to be relatively rare. This study examines coherence negotiation in hypertext with particularly reference to hypertext fiction. Coherence, or the quality of making sense, is a fundamental property of textness. Proceeding from the premise that coherence is a subjectively evaluated property rather than an objective quality arising directly from textual cues, the study focuses on the processes through which readers interact with hyperlinks and negotiate continuity between hypertextual fragments. The study begins with a typological discussion of textuality and an overview of the historical and technological precedents of modern hypertexts. Then, making use of text linguistic, discourse analytical, pragmatic, and narratological approaches to textual coherence, the study takes established models developed for analyzing and describing conventional texts, and examines their applicability to hypertext. Primary data derived from a collection of hyperfictions is used throughout to illustrate the mechanisms in practice. Hypertextual coherence negotiation is shown to require the ability to cognitively operate between local and global coherence by means of processing lexical cohesion, discourse topical continuities, inferences and implications, and shifting cognitive frames. The main conclusion of the study is that the style of reading required by hypertextuality fosters a new paradigm of coherence. Defined as fuzzy coherence, this new approach to textual sensemaking is predicated on an acceptance of the coherence challenges readers experience when the act of reading comes to involve repeated encounters with referentially imprecise hyperlinks and discourse topical shifts. A practical application of fuzzy coherence is shown to be in effect in the way coherence is actively manipulated in hypertext narratives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and function of northern ecosystems are strongly influenced by climate change and variability and by human-induced disturbances. The projected global change is likely to have a pronounced effect on the distribution and productivity of different species, generating large changes in the equilibrium at the tree-line. In turn, movement of the tree-line and the redistribution of species produce feedback to both the local and the regional climate. This research was initiated with the objective of examining the influence of natural conditions on the small-scale spatial variation of climate in Finnish Lapland, and to study the interaction and feedback mechanisms in the climate-disturbances-vegetation system near the climatological border of boreal forest. The high (1 km) resolution spatial variation of climate parameters over northern Finland was determined by applying the Kriging interpolation method that takes into account the effect of external forcing variables, i.e., geographical coordinates, elevation, sea and lake coverage. Of all the natural factors shaping the climate, the geographical position, local topography and altitude proved to be the determining ones. Spatial analyses of temperature- and precipitation-derived parameters based on a 30-year dataset (1971-2000) provide a detailed description of the local climate. Maps of the mean, maximum and minimum temperatures, the frost-free period and the growing season indicate that the most favourable thermal conditions exist in the south-western part of Lapland, around large water bodies and in the Kemijoki basin, while the coldest regions are in highland and fell Lapland. The distribution of precipitation is predominantly longitudinally dependent but with the definite influence of local features. The impact of human-induced disturbances, i.e., forest fires, on local climate and its implication for forest recovery near the northern timberline was evaluated in the Tuntsa area of eastern Lapland, damaged by a widespread forest fire in 1960 and suffering repeatedly-failed vegetation recovery since that. Direct measurements of the local climate and simulated heat and water fluxes indicated the development of a more severe climate and physical conditions on the fire-disturbed site. Removal of the original, predominantly Norway spruce and downy birch vegetation and its substitution by tundra vegetation has generated increased wind velocity and reduced snow accumulation, associated with a large variation in soil temperature and moisture and deep soil frost. The changed structural parameters of the canopy have determined changes in energy fluxes by reducing the latter over the tundra vegetation. The altered surface and soil conditions, as well as the evolved severe local climate, have negatively affected seedling growth and survival, leading to more unfavourable conditions for the reproduction of boreal vegetation and thereby causing deviations in the regional position of the timberline. However it should be noted that other factors, such as an inadequate seed source or seedbed, the poor quality of the soil and the intensive logging of damaged trees could also exacerbate the poor tree regeneration. In spite of the failed forest recovery at Tunsta, the position and composition of the timberline and tree-line in Finnish Lapland may also benefit from present and future changes in climate. The already-observed and the projected increase in temperature, the prolonged growing season, as well as changes in the precipitation regime foster tree growth and new regeneration, resulting in an advance of the timberline and tree-line northward and upward. This shift in the distribution of vegetation might be decelerated or even halted by local topoclimatic conditions and by the expected increase in the frequency of disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neural basis of visual perception can be understood only when the sequence of cortical activity underlying successful recognition is known. The early steps in this processing chain, from retina to the primary visual cortex, are highly local, and the perception of more complex shapes requires integration of the local information. In Study I of this thesis, the progression from local to global visual analysis was assessed by recording cortical magnetoencephalographic (MEG) responses to arrays of elements that either did or did not form global contours. The results demonstrated two spatially and temporally distinct stages of processing: The first, emerging 70 ms after stimulus onset around the calcarine sulcus, was sensitive to local features only, whereas the second, starting at 130 ms across the occipital and posterior parietal cortices, reflected the global configuration. To explore the links between cortical activity and visual recognition, Studies II III presented subjects with recognition tasks of varying levels of difficulty. The occipito-temporal responses from 150 ms onwards were closely linked to recognition performance, in contrast to the 100-ms mid-occipital responses. The averaged responses increased gradually as a function of recognition performance, and further analysis (Study III) showed the single response strengths to be graded as well. Study IV addressed the attention dependence of the different processing stages: Occipito-temporal responses peaking around 150 ms depended on the content of the visual field (faces vs. houses), whereas the later and more sustained activity was strongly modulated by the observers attention. Hemodynamic responses paralleled the pattern of the more sustained electrophysiological responses. Study V assessed the temporal processing capacity of the human object recognition system. Above sufficient luminance, contrast and size of the object, the processing speed was not limited by such low-level factors. Taken together, these studies demonstrate several distinct stages in the cortical activation sequence underlying the object recognition chain, reflecting the level of feature integration, difficulty of recognition, and direction of attention.