5 resultados para Linear matrix inequalities (LMI) techniques

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracellular matrix (ECM) is a complex network of various proteins and proteoglycans which provides tissues with structural strength and resilience. By harvesting signaling molecules like growth factors ECM has the capacity to control cellular functions including proliferation, differentiation and cell survival. Latent transforming growth factor β (TGF-β) binding proteins (LTBPs) associate fibrillar structures of the ECM and mediate the efficient secretion and ECM deposition of latent TGF-β. The current work was conducted to determine the regulatory regions of LTBP-3 and -4 genes to gain insight into their tissue-specific expression which also has impact on TGF-β biology. Furthermore, the current research aimed at defining the ECM targeting of the N-terminal variants of LTBP-4 (LTBP-4S and -4L), which is required to understand their functions in tissues and to gain insight into conditions in which TGF-β is activated. To characterize the regulatory regions of LTBP-3 and -4 genes in silico and functional promoter analysis techniques were employed. It was found that the expression of LTBP-4S and -4L are under control of two independent promoters. This finding was in accordance with the observed expression patterns of LTBP-4S and -4L in human tissues. All promoter regions characterized in this study were TATAless, GC-rich and highly conserved between human and mouse species. Putative binding sites for Sp1 and GATA family of transcription factors were recognized in all of these regulatory regions. It is possible that these transcription factors control the basal expression of LTBP-3 and -4 genes. Smad binding element was found within the LTBP-3 and -4S promoter regions, but it was not present in LTBP-4L promoter. Although this element important for TGF-β signaling was present in LTBP-4S promoter, TGF-β did not induce its transcriptional activity. LTBP-3 promoter activity and mRNA expression instead were stimulated by TGF-β1 in osteosarcoma cells. It was found that the stimulatory effect of TGF-β was mediated by Smad and Erk MAPK signaling pathways. The current work explored the ECM targeting of LTBP-4S and identified binding partners of this protein. It was found that the N-terminal end of LTBP-4S possesses fibronectin (FN) binding sites which are critical for its ECM targeting. FN deficient fibroblasts incorporated LTBP-4S into their ECM only after addition of exogenous FN. Furthermore, LTBP-4S was found to have heparin binding regions, of which the C-terminal binding site mediated fibroblast adhesion. Soluble heparin prevented the ECM association of LTBP-4S in fibroblast cultures. In the current work it was observed that there are significant differences in the secretion, processing and ECM targeting of LTBP-4S and -4L. Interestingly, it was observed that most of the secreted LTBP-4L was associated with latent TGF-β1, whereas LTBP-4S was mainly secreted as a free form from CHO cells. This thesis provides information on transcriptional regulation of LTBP-3 and -4 genes, which is required for the deeper understanding of their tissue-specific functions. Further, the current work elucidates the structural variability of LTBPs, which appears to have impact on secretion and ECM targeting of TGF-β. These findings may advance understanding the abnormal activation of TGF-β which is associated with connective tissue disorders and cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Miniaturized mass spectrometric ionization techniques for environmental analysis and bioanalysis Novel miniaturized mass spectrometric ionization techniques based on atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were studied and evaluated in the analysis of environmental samples and biosamples. The three analytical systems investigated here were gas chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry (GC-µAPCI-MS) and gas chromatography-microchip atmospheric pressure photoionization-mass spectrometry (GC-µAPPI-MS), where sample pretreatment and chromatographic separation precede ionization, and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS), where the samples are analyzed either as such or after minimal pretreatment. The gas chromatography-microchip atmospheric pressure ionization-mass spectrometry (GC-µAPI-MS) instrumentations were used in the analysis of polychlorinated biphenyls (PCBs) in negative ion mode and 2-quinolinone-derived selective androgen receptor modulators (SARMs) in positive ion mode. The analytical characteristics (i.e., limits of detection, linear ranges, and repeatabilities) of the methods were evaluated with PCB standards and SARMs in urine. All methods showed good analytical characteristics and potential for quantitative environmental analysis or bioanalysis. Desorption and ionization mechanisms in DAPPI were studied. Desorption was found to be a thermal process, with the efficiency strongly depending on thermal conductivity of the sampling surface. Probably the size and polarity of the analyte also play a role. In positive ion mode, the ionization is dependent on the ionization energy and proton affinity of the analyte and the spray solvent, while in negative ion mode the ionization mechanism is determined by the electron affinity and gas-phase acidity of the analyte and the spray solvent. DAPPI-MS was tested in the fast screening analysis of environmental, food, and forensic samples, and the results demonstrated the feasibility of DAPPI-MS for rapid screening analysis of authentic samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radioactive particles from three locations were investigated for elemental composition, oxidation states of matrix elements, and origin. Instrumental techniques applied to the task were scanning electron microscopy, X-ray and gamma-ray spectrometry, secondary ion mass spectrometry, and synchrotron radiation based microanalytical techniques comprising X-ray fluorescence spectrometry, X-ray fluorescence tomography, and X-ray absorption near-edge structure spectroscopy. Uranium-containing low activity particles collected from Irish Sea sediments were characterized in terms of composition and distribution of matrix elements and the oxidation states of uranium. Indications of the origin were obtained from the intensity ratios and the presence of thorium, uranium, and plutonium. Uranium in the particles was found to exist mostly as U(IV). Studies on plutonium particles from Runit Island (Marshall Islands) soil indicated that the samples were weapon fuel fragments originating from two separate detonations: a safety test and a low-yield test. The plutonium in the particles was found to be of similar age. The distribution and oxidation states of uranium and plutonium in the matrix of weapon fuel particles from Thule (Greenland) sediments were investigated. The variations in intensity ratios observed with different techniques indicated more than one origin. Uranium in particle matrixes was mostly U(IV), but plutonium existed in some particles mainly as Pu(IV), and in others mainly as oxidized Pu(VI). The results demonstrated that the various techniques were effectively applied in the characterization of environmental radioactive particles. An on-line method was developed for separating americium from environmental samples. The procedure utilizes extraction chromatography to separate americium from light lanthanides, and cation exchange to concentrate americium before the final separation in an ion chromatography column. The separated radiochemically pure americium fraction is measured by alpha spectrometry. The method was tested with certified sediment and soil samples and found to be applicable for the analysis of environmental samples containing a wide range of Am-241 activity. Proceeding from the on-line method developed for americium, a method was also developed for separating plutonium and americium. Plutonium is reduced to Pu(III), and separated together with Am(III) throughout the procedure. Pu(III) and Am(III) are eluted from the ion chromatography column as anionic dipicolinate and oxalate complexes, respectively, and measured by alpha spectrometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix decompositions, where a given matrix is represented as a product of two other matrices, are regularly used in data mining. Most matrix decompositions have their roots in linear algebra, but the needs of data mining are not always those of linear algebra. In data mining one needs to have results that are interpretable -- and what is considered interpretable in data mining can be very different to what is considered interpretable in linear algebra. --- The purpose of this thesis is to study matrix decompositions that directly address the issue of interpretability. An example is a decomposition of binary matrices where the factor matrices are assumed to be binary and the matrix multiplication is Boolean. The restriction to binary factor matrices increases interpretability -- factor matrices are of the same type as the original matrix -- and allows the use of Boolean matrix multiplication, which is often more intuitive than normal matrix multiplication with binary matrices. Also several other decomposition methods are described, and the computational complexity of computing them is studied together with the hardness of approximating the related optimization problems. Based on these studies, algorithms for constructing the decompositions are proposed. Constructing the decompositions turns out to be computationally hard, and the proposed algorithms are mostly based on various heuristics. Nevertheless, the algorithms are shown to be capable of finding good results in empirical experiments conducted with both synthetic and real-world data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human sport doping control analysis is a complex and challenging task for anti-doping laboratories. The List of Prohibited Substances and Methods, updated annually by World Anti-Doping Agency (WADA), consists of hundreds of chemically and pharmacologically different low and high molecular weight compounds. This poses a considerable challenge for laboratories to analyze for them all in a limited amount of time from a limited sample aliquot. The continuous expansion of the Prohibited List obliges laboratories to keep their analytical methods updated and to research new available methodologies. In this thesis, an accurate mass-based analysis employing liquid chromatography - time-of-flight mass spectrometry (LC-TOFMS) was developed and validated to improve the power of doping control analysis. New analytical methods were developed utilizing the high mass accuracy and high information content obtained by TOFMS to generate comprehensive and generic screening procedures. The suitability of LC-TOFMS for comprehensive screening was demonstrated for the first time in the field with mass accuracies better than 1 mDa. Further attention was given to generic sample preparation, an essential part of screening analysis, to rationalize the whole work flow and minimize the need for several separate sample preparation methods. Utilizing both positive and negative ionization allowed the detection of almost 200 prohibited substances. Automatic data processing produced a Microsoft Excel based report highlighting the entries fulfilling the criteria of the reverse data base search (retention time (RT), mass accuracy, isotope match). The quantitative performance of LC-TOFMS was demonstrated with morphine, codeine and their intact glucuronide conjugates. After a straightforward sample preparation the compounds were analyzed directly without the need for hydrolysis, solvent transfer, evaporation or reconstitution. The hydrophilic interaction technique (HILIC) provided good chromatographic separation, which was critical for the morphine glucuronide isomers. A wide linear range (50-5000 ng/ml) with good precision (RSD<10%) and accuracy (±10%) was obtained, showing comparable or better performance to other methods used. In-source collision-induced dissociation (ISCID) allowed confirmation analysis with three diagnostic ions with a median mass accuracy of 1.08 mDa and repeatable ion ratios fulfilling WADA s identification criteria. The suitability of LC-TOFMS for screening of high molecular weight doping agents was demonstrated with plasma volume expanders (PVE), namely dextran and hydroxyethylstarch (HES). Specificity of the assay was improved, since interfering matrix compounds were removed by size exclusion chromatography (SEC). ISCID produced three characteristic ions with an excellent mean mass accuracy of 0.82 mDa at physiological concentration levels. In summary, by combining TOFMS with a proper sample preparation and chromatographic separation, the technique can be utilized extensively in doping control laboratories for comprehensive screening of chemically different low and high molecular weight compounds, for quantification of threshold substances and even for confirmation. LC-TOFMS rationalized the work flow in doping control laboratories by simplifying the screening scheme, expediting reporting and minimizing the analysis costs. Therefore LC-TOFMS can be exploited widely in doping control, and the need for several separate analysis techniques is reduced.