3 resultados para Lifetimes

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Vantaa Primary Care Depression Study (PC-VDS) is a naturalistic and prospective cohort study concerning primary care patients with depressive disorders. It forms a collaborative research project between the Department of Mental and Alcohol Research of the National Public Health Institute, and the Primary Health Care Organization of the City of Vantaa. The aim is to obtain a comprehensive view on clinically significant depression in primary care, and to compare depressive patients in primary care and in secondary level psychiatric care in terms of clinical characteristics. Consecutive patients (N=1111) in three primary care health centres were screened for depression with the PRIME-MD, and positive cases interviewed by telephone. Cases with current depressive symptoms were diagnosed face-to-face with the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I/P). A cohort of 137 patients with unipolar depressive disorders, comprising all patients with at least two depressive symptoms and clinically significant distress or disability, was recruited. The Structured Clinical Interview for DSM-IV Axis II Disorders (SCID-II), medical records, rating scales, interview and a retrospective life-chart were used to obtain comprehensive cross-sectional and retrospective longitudinal information. For investigation of suicidal behaviour the Scale for Suicidal Ideation (SSI), patient records and the interview were used. The methodology was designed to be comparable to The Vantaa Depression Study (VDS) conducted in secondary level psychiatric care. Comparison of major depressive disorder (MDD) patients aged 20-59 from primary care in PC-VDS (N=79) was conducted with new psychiatric outpatients (N =223) and inpatients (N =46) in VDS. The PC-VDS cohort was prospectively followed up at 3, 6 and 18 months. Altogether 123 patients (90%) completed the follow-up. Duration of the index episode and the timing of relapses or recurrences were examined using a life-chart. The retrospective investigation revealed current MDD in most (66%), and lifetime MDD in nearly all (90%) cases of clinically significant depressive syndromes. Two thirds of the “subsyndromal” cases had a history of major depressive episode (MDE), although they were currently either in partial remission or a potential prodromal phase. Recurrences and chronicity were common. The picture of depression was complicated by Axis I co-morbidity in 59%, Axis II in 52% and chronic Axis III disorders in 47%; only 12% had no co-morbidity. Within their lifetimes, one third (37%) had seriously considered suicide, and one sixth (17%) had attempted it. Suicidal behaviour clustered in patients with moderate to severe MDD, co-morbidity with personality disorders, and a history of treatment in psychiatric care. The majority had received treatment for depression, but suicidal ideation had mostly remained unrecognised. The comparison of patients with MDD in primary care to those in psychiatric care revealed that the majority of suicidal or psychotic patients were receiving psychiatric treatment, and the patients with the most severe symptoms and functional limitations were hospitalized. In other clinical aspects, patients with MDD in primary care were surprisingly similar to psychiatric outpatients. Mental health contacts earlier in the current MDE were common among primary care patients. The 18-month prospective investigation with a life-chart methodology verified the chronic and recurrent nature of depression in primary care. Only one-quarter of patients with MDD achieved and maintained full remission during the follow-up, while another quarter failed to remit at all. The remaining patients suffered either from residual symptoms or recurrences. While severity of depression was the strongest predictor of recovery, presence of co-morbid substance use disorders, chronic medical illness and cluster C personality disorders all contributed to an adverse outcome. In clinical decision making, beside severity of depression and co-morbidity, history of previous MDD should not be ignored by primary care doctors while depression there is usually severe enough to indicate at least follow-up, and concerning those with residual symptoms, evaluation of their current treatment. Moreover, recognition of suicidal behaviour among depressed patients should also be improved. In order to improve outcome of depression in primary care, the often chronic and recurrent nature of depression should be taken into account in organizing the care. According to literature management programs of a chronic disease, with enhancement of the role of case managers and greater integration of primary and specialist care, have been successful. Optimum ways of allocating resources between treatment providers as well as within health centres should be found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleation is the first step of the process by which gas molecules in the atmosphere condense to form liquid or solid particles. Despite the importance of atmospheric new-particle formation for both climate and health-related issues, little information exists on its precise molecular-level mechanisms. In this thesis, potential nucleation mechanisms involving sulfuric acid together with either water and ammonia or reactive biogenic molecules are studied using quantum chemical methods. Quantum chemistry calculations are based on the numerical solution of Schrödinger's equation for a system of atoms and electrons subject to various sets of approximations, the precise details of which give rise to a large number of model chemistries. A comparison of several different model chemistries indicates that the computational method must be chosen with care if accurate results for sulfuric acid - water - ammonia clusters are desired. Specifically, binding energies are incorrectly predicted by some popular density functionals, and vibrational anharmonicity must be accounted for if quantitatively reliable formation free energies are desired. The calculations reported in this thesis show that a combination of different high-level energy corrections and advanced thermochemical analysis can quantitatively replicate experimental results concerning the hydration of sulfuric acid. The role of ammonia in sulfuric acid - water nucleation was revealed by a series of calculations on molecular clusters of increasing size with respect to all three co-ordinates; sulfuric acid, water and ammonia. As indicated by experimental measurements, ammonia significantly assists the growth of clusters in the sulfuric acid - co-ordinate. The calculations presented in this thesis predict that in atmospheric conditions, this effect becomes important as the number of acid molecules increases from two to three. On the other hand, small molecular clusters are unlikely to contain more than one ammonia molecule per sulfuric acid. This implies that the average NH3:H2SO4 mole ratio of small molecular clusters in atmospheric conditions is likely to be between 1:3 and 1:1. Calculations on charged clusters confirm the experimental result that the HSO4- ion is much more strongly hydrated than neutral sulfuric acid. Preliminary calculations on HSO4- NH3 clusters indicate that ammonia is likely to play at most a minor role in ion-induced nucleation in the sulfuric acid - water system. Calculations of thermodynamic and kinetic parameters for the reaction of stabilized Criegee Intermediates with sulfuric acid demonstrate that quantum chemistry is a powerful tool for investigating chemically complicated nucleation mechanisms. The calculations indicate that if the biogenic Criegee Intermediates have sufficiently long lifetimes in atmospheric conditions, the studied reaction may be an important source of nucleation precursors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon strip detectors are fast, cost-effective and have an excellent spatial resolution. They are widely used in many high-energy physics experiments. Modern high energy physics experiments impose harsh operation conditions on the detectors, e.g., of LHC experiments. The high radiation doses cause the detectors to eventually fail as a result of excessive radiation damage. This has led to a need to study radiation tolerance using various techniques. At the same time, a need to operate sensors approaching the end their lifetimes has arisen. The goal of this work is to demonstrate that novel detectors can survive the environment that is foreseen for future high-energy physics experiments. To reach this goal, measurement apparatuses are built. The devices are then used to measure the properties of irradiated detectors. The measurement data are analyzed, and conclusions are drawn. Three measurement apparatuses built as a part of this work are described: two telescopes measuring the tracks of the beam of a particle accelerator and one telescope measuring the tracks of cosmic particles. The telescopes comprise layers of reference detectors providing the reference track, slots for the devices under test, the supporting mechanics, electronics, software, and the trigger system. All three devices work. The differences between these devices are discussed. The reconstruction of the reference tracks and analysis of the device under test are presented. Traditionally, silicon detectors have produced a very clear response to the particles being measured. In the case of detectors nearing the end of their lifefimes, this is no longer true. A new method benefitting from the reference tracks to form clusters is presented. The method provides less biased results compared to the traditional analysis, especially when studying the response of heavily irradiated detectors. Means to avoid false results in demonstrating the particle-finding capabilities of a detector are also discussed. The devices and analysis methods are primarily used to study strip detectors made of Magnetic Czochralski silicon. The detectors studied were irradiated to various fluences prior to measurement. The results show that Magnetic Czochralski silicon has a good radiation tolerance and is suitable for future high-energy physics experiments.