5 resultados para Isothermal Titration

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many active pharmaceutical ingredients (APIs) have both anhydrate and hydrate forms. Due to the different physicochemical properties of solid forms, the changes in solid-state may result in therapeutic, pharmaceutical, legal and commercial problems. In order to obtain good solid dosage form quality and performance, there is a constant need to understand and control these phase transitions during manufacturing and storage. Thus it is important to detect and also quantify the possible transitions between the different forms. In recent years, vibrational spectroscopy has become an increasingly popular tool to characterise the solid-state forms and their phase transitions. It offers several advantages over other characterisation techniques including an ability to obtain molecular level information, minimal sample preparation, and the possibility of monitoring changes non-destructively in-line. Dehydration is the phase transition of hydrates which is frequently encountered during the dosage form production and storage. The aim of the present thesis was to investigate the dehydration behaviour of diverse pharmaceutical hydrates by near infrared (NIR), Raman and terahertz pulsed spectroscopic (TPS) monitoring together with multivariate data analysis. The goal was to reveal new perspectives for investigation of the dehydration at the molecular level. Solid-state transformations were monitored during dehydration of diverse hydrates on hot-stage. The results obtained from qualitative experiments were used to develop a method and perform the quantification of the solid-state forms during process induced dehydration in a fluidised bed dryer. Both in situ and in-line process monitoring and quantification was performed. This thesis demonstrated the utility of vibrational spectroscopy techniques and multivariate modelling to monitor and investigate dehydration behaviour in situ and during fluidised bed drying. All three spectroscopic methods proved complementary in the study of dehydration. NIR spectroscopy models could quantify the solid-state forms in the binary system, but were unable to quantify all the forms in the quaternary system. Raman spectroscopy models on the other hand could quantify all four solid-state forms that appeared upon isothermal dehydration. The speed of spectroscopic methods makes them applicable for monitoring dehydration and the quantification of multiple forms was performed during phase transition. Thus the solid-state structure information at the molecular level was directly obtained. TPS detected the intermolecular phonon modes and Raman spectroscopy detected mostly the changes in intramolecular vibrations. Both techniques revealed information about the crystal structure changes. NIR spectroscopy, on the other hand was more sensitive to water content and hydrogen bonding environment of water molecules. This study provides a basis for real time process monitoring using vibrational spectroscopy during pharmaceutical manufacturing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aminopolykarboksyylaatteja, kuten etyleenidiamiinitetraetikkahappoa (EDTA), on käytetty useiden vuosikymmenien ajan erinomaisen metalli-ionien sitomiskyvyn vuoksi kelatointiaineena lukuisissa sovelluksissa sekä analytiikassa että monilla teollisisuuden aloilla. Näiden yhdisteiden biohajoamattomuus on kuitenkin herättänyt huolta viime aikoina, sillä niiden on havaittu olevan hyvin pysyviä luonnossa. Tämä työ on osa laajempaa tutkimushanketta, jossa on tavoitteena löytää korvaavia kelatointiaineita EDTA:lle. Tutkimuksen aiheena on kuuden kelatointiaineen metalli-ionien sitomiskyvyn kartoitus. EDTA:a paremmin luonnossa hajoavina nämä ovat ympäristöystävällisiä ehdokkaita korvaaviksi kelatointiaineiksi useisiin sovelluksiin. Työssä tutkittiin niiden kompleksinmuodostusta useiden metalli-ionien kanssa potentiometrisella titrauksella. Metalli-ionivalikoima vaihteli hieman kelatointiaineesta riippuen sisältäen magnesium-, kalsium-, mangaani-, rauta-, kupari-, sinkki-, kadmium-, elohopea-, lyijy- ja lantaani-ionit. Tutkittavat metallit oli valittu tähtäimessä olevien sovellusten, synteesissä ilmenneiden ongelmien tai ympäristönäkökohtien perusteella. Tulokset osoittavat näiden yhdisteiden metallinsitomiskyvyn olevan jonkin verran heikompi kuin EDTA:lla, mutta kuitenkin riittävän useisiin sovelluksiin kuten sellunvalkaisuprosessiin. Myrkyllisten raskasmetallien, kadmiumin, elohopen ja lyijyn kohdalla EDTA:a heikompi sitoutuminen on eduksikin, koska se yhdistettynä parempaan biohajoavuuteen saattaa alentaa tutkittujen yhdisteiden kykyä mobilisoida kyseisiä metalleja sedimenteistä. Useimmilla tutkituista yhdisteistä on ympäristönäkökulmasta etuna myös EDTA:a pienempi typpipitoisuus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Painful bladder syndrome/interstitial cystitis (PBS/IC) is a chronic urinary bladder disorder of unknown etiology characterized by symptoms of bladder pain and urinary frequency. PBS/IC is a chronic disease in which drug therapy has not led to significant success over the course of time. If the symptoms of PBS/IC are refractory to standard treatments, a possible cure might demand surgical intervention involving cystectomy. The eventual autoimmune etiology in mind, immunosuppressive drug therapy with cyclosporine A (CyA) was started to patients with refractory PBS/IC. CyA is a potent anti-inflammatory drug, a calcineurin inhibitor which inhibits T lymphocyte IL-2 produc-tion. T cells are present in abundance in inflammation of the bladder in PBS/IC. On the basis of a pilot, short-term study with CyA on PBS/IC, use of CyA was continued empirically over the long term. We conducted a prospective, randomized, six-month study in 64 patients comparing the effect of CyA with the FDA approved treatment, pentosan polysulfate sodium (PPS). We measured the drug effect on patient s symptoms, the potassium sensitivity test, and on urinary biomarkers. We further tested the impact of CyA, PPS, DMSO and BCG therapy on a health-related quality of life questionnaire and evaluated the response rate to treatment with these therapies. Long-term use of CyA was safe and effective in PBS/IC patients. The good clinical effect matured individually during the years in which CyA was continued. Cessation of medication led to the reappearance of symptoms, and restarting CyA to renewed alleviation, so that CyA was administered as continuous medication. The response rate to CyA increased during the study period, comprising 75% of CyA patients at six months. 19% of patients responded to PPS therapy. Adverse effects were more common in the CyA group, underlining the importance of monitoring the drug safety and appropriate titration of the dose. The potassium sensitivity test is positive in the majority of PBS/IC patients. Successful therapy of PBS/IC can alter nerve sensitivity to external potassium. This effect was seen more often after CyA therapy. Successful treatment of PBS/IC with CyA resulted to decreasing urinary levels of EGF. IL-6 levels in urine were higher among older patient with a longer history of PBS/IC. In these patients, reduced levels of urinary IL-6 were measured after CyA therapy. Patients who experience the best treatment response have improved quality of life according to the post-treatment health-related quality of life (HRQOL) questionnaire. CyA had more impact on the ma-jority of the aspects of QoL than PPS. Despite DMSO therapy being more successful than BCG in the count of responders, DMSO and BCG had equal effects on the HRQOL questionnaire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays growing number of new active pharmaceutical ingredients (API) have large molecular weight and are hydrophobic. The energy of their crystal lattice is bigger and polarity has decreased. This leads to weakened solubility and dissolution rate of the drug. These properties can be enhanced for example by amorphization. Amorphous form has the best dissolution rate in the solid state. In the amorphous form drug molecules are randomly arranged, so the energy required to dissolve molecules is lower compared to the crystalline counterpart. The disadvantage of amorphous form is that it is unstable. Amorphous form tends to crystallize. Stability of amorphous form can be enhanced by adding an adjuvant to drug product. Adjuvant is usually a polymer. Polymers prevent crystallization both by forming bonds with API molecules and by steric hindrance. The key thing in stabilizing amorphous form is good miscibility between API and polymer. They have to be mixed in a molecular level so that the polymer is able to prevent crystallization. The aim of this work was to study miscibility of drug and polymer and stability of their dispersion with different analytical methods. Amorphous dispersions were made by rotary evaporator and freeze dryer. Amorphicity was confirmed with X-ray powder diffraction (XRPD) right after preparation. Itraconazole and theophylline were the chosen molecules to be stabilized. Itraconazole was expected to be easier and theophylline more difficult to stabilize. Itraconazole was stabilized with HPMC and theophylline was stabilized with PVP. Miscibility was studied with XRPD and differential scanning calorimetry (DSC). In addition it was studied with polarized light microscope if miscibility was possible to see visually. Dispersions were kept in stressed conditions and the crystallization was analyzed with XRPD. Stability was also examined with isothermal microcalorimetry (IMC). The dispersion of itraconazole and theophylline 40/60 (w/w) was completely miscible. It was proved by linear combination of XRPD results and single glass transition temperature in DSC. Homogenic well mixed film was observed with light microscope. Phase separation was observed with other compositions. Dispersions of theophylline and PVP mixed only partly. Stability of itraconazole dispersions were better than theophylline dispersions which were mixed poorer. So miscibility was important thing considering stability. The results from isothermal microcalorimetry were similar to results from conventional stability studies. Complementary analytical methods should be used when studying miscibility so that the results are more reliable. Light microscope is one method in addition to mostly used XRPD and DSC. Analyzing light microscope photos is quite subjective but it gives an idea of miscibility. Isothermal microcalorimetry can be one option for conventional stability studies. If right conditions can be made where the crystallization is not too fast, it may be possible to predict stability with isothermal microcalorimetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical simulations of the magnetorotational instability (MRI) with zero initial net flux in a non-stratified isothermal cubic domain are used to demonstrate the importance of magnetic boundary conditions. In fully periodic systems the level of turbulence generated by the MRI strongly decreases as the magnetic Prandtl number (Pm), which is the ratio of kinematic viscosity and magnetic diffusion, is decreased. No MRI or dynamo action below Pm=1 is found, agreeing with earlier investigations. Using vertical field conditions, which allow magnetic helicity fluxes out of the system, the MRI is found to be excited in the range 0.1