15 resultados para Intestinal permeation assay
em Helda - Digital Repository of University of Helsinki
Resumo:
Poor pharmacokinetics is one of the reasons for the withdrawal of drug candidates from clinical trials. There is an urgent need for investigating in vitro ADME (absorption, distribution, metabolism and excretion) properties and recognising unsuitable drug candidates as early as possible in the drug development process. Current throughput of in vitro ADME profiling is insufficient because effective new synthesis techniques, such as drug design in silico and combinatorial synthesis, have vastly increased the number of drug candidates. Assay technologies for larger sets of compounds than are currently feasible are critically needed. The first part of this work focused on the evaluation of cocktail strategy in studies of drug permeability and metabolic stability. N-in-one liquid chromatography-tandem mass spectrometry (LC/MS/MS) methods were developed and validated for the multiple component analysis of samples in cocktail experiments. Together, cocktail dosing and LC/MS/MS were found to form an effective tool for increasing throughput. First, cocktail dosing, i.e. the use of a mixture of many test compounds, was applied in permeability experiments with Caco-2 cell culture, which is a widely used in vitro model for small intestinal absorption. A cocktail of 7-10 reference compounds was successfully evaluated for standardization and routine testing of the performance of Caco-2 cell cultures. Secondly, cocktail strategy was used in metabolic stability studies of drugs with UGT isoenzymes, which are one of the most important phase II drug metabolizing enzymes. The study confirmed that the determination of intrinsic clearance (Clint) as a cocktail of seven substrates is possible. The LC/MS/MS methods that were developed were fast and reliable for the quantitative analysis of a heterogenous set of drugs from Caco-2 permeability experiments and the set of glucuronides from in vitro stability experiments. The performance of a new ionization technique, atmospheric pressure photoionization (APPI), was evaluated through comparison with electrospray ionization (ESI), where both techniques were used for the analysis of Caco-2 samples. Like ESI, also APPI proved to be a reliable technique for the analysis of Caco-2 samples and even more flexible than ESI because of the wider dynamic linear range. The second part of the experimental study focused on metabolite profiling. Different mass spectrometric instruments and commercially available software tools were investigated for profiling metabolites in urine and hepatocyte samples. All the instruments tested (triple quadrupole, quadrupole time-of-flight, ion trap) exhibited some good and some bad features in searching for and identifying of expected and non-expected metabolites. Although, current profiling software is helpful, it is still insufficient. Thus a time-consuming largely manual approach is still required for metabolite profiling from complex biological matrices.
Resumo:
The type A lantibiotic nisin produced by several Lactococcus lactis strains, and one Streptococcus uberis strainis a small antimicrobial peptide that inhibits the growth of a wide range of gram-positive bacteria, such as Bacillus, Clostridium, Listeria and Staphylococcus species. It is nontoxic to humans and used as a food preservative (E234) in more than 50 countries including the EU, the USA, and China. National legislations concerning maximum addition levels of nisin in different foods vary greatly. Therefore, there is a demand for non-laborious and sensitive methods to identify and quantify nisin reliably from different food matrices. The horizontal inhibition assay, based on the inhibitory effect of nisin to Micrococcus luteus is the base for most quantification methods developed so far. However, the sensitivity and accuracy of the agar diffusion method is affected by several parameters. Immunological tests have also been described. Taken into account the sensitivity of immunological methods to interfering substances within sample matrices, and possible cross-reactivities with lantibiotics structurally close to nisin, their usefulness for nisin detection from food samples remains limited. The proteins responsible for nisin biosynthesis, and producer self-immunity are encoded by genes arranged into two inducible operons, nisA/Z/QBTCIPRK and nisFEG, which also contain internal, constitutive promoters PnisI and PnisR. The transmembrane histidine kinase NisK and the response regulator NisR form a two-component signal transduction system, in which NisK autophosphorylates after exposure to extra cellular nisin, and subsequently transfers the phosphate to NisR. The phosphorylated NisR then relays the signal downstream by binding to two regulated promoters in the nisin gene cluster, i.e the nisA/Z/Qand the nisF promoters, thus activating transcription of the structural gene nisA/Z/Q and the downstream genes nisBTCIPRK from the nisA/Z/Q promoter, and the genes nisFEG from the nisF promoter. In this work two novel and highly sensitive nisin bioassays were developed. Both of these quantification methods were based on NisRK mediated, nisin induced Green Fluorescent Protein (GFP) fluorescence. The suitabilities of these assays for quantifica¬tion of nisin from food samples were evaluated in several food matrices. These bioassays had nisin sensitivities in the nanogram or picogram levels. In addition, shelf life of nisin in cooked sausages and retainment of the induction activity of nisin in intestinal chyme (intestinal content) was assessed.
Resumo:
The incidence of colon cancer is high in Western societies, and in Finland it is among the three most common cancer types in both females and males. Environmental factors, including diet, affect colon cancer development. During the last few years, a vast amount of new, functional foods have been introduced to the consumers. Several products are already available that are marketed as promoting intestinal health. To be able to reliably call a dietary compound a chemopreventive substance it is of fundamental importance to understand the mechanism by which it affects tumour formation and the integrity of the epithelial cells. In this thesis, three different dietary compounds were studied in an experimental model of colon cancer. Inulin is a non-digestible fibre found naturally in chicory roots, artichokes and onions, amongst others. Nowadays it is widely used as an added dietary fibre in several food products. Conjugated linoleic acid (CLA) is a conjugated form of the fatty acid linoleic acid. CLA is formed by bacterial fermentation of linoleic acid in the rumen of cows and other ruminants. Concomitantly, it can naturally be found in milk and meat of ruminants. White currant is a colourless berry low in phenolic compounds that are believed to prevent cancer formation. Contrary to what was expected, inulin and the conjugated linoleic acid isomer trans-10, cis-12, were tumour growth promoting dietary constituents when fed to Min mice. Both diets decreased the NF-kappaB levels in the mucosa, but physiological adenoma development did not affect NF-kappaB. Diet altered beta-catenin and p53 signalling in the adenomas, confirming their involvement in adenoma growth. White currant, on the other hand, was chemopreventive, despite its low contents of phenolic compounds. The chemopreventive effect was accompanied by increased p53 levels in the mucosa, and decreased beta-catenin and NF-kappaB levels in the adenoma. This could explain the reduced adenoma number and size. The results underline the importance of carefully testing new dietary compounds in different settings to reliably confirm their health benefits. In this study two compounds that are consumed and believed to add to our health proved to be cancer promotive. A berry with low phenolic contents, on the other hand, was chemopreventive.
Resumo:
Type 1 diabetes (T1D) is considered to be an autoimmune disease. The cause of T1D is the destruction of insulin-producing β-cells in the pancreatic islets. The autoimmune nature of T1D is characterized by the presence of autoreactive T-cells and autoantibodies against β-cell molecules. Insulin is the only β-cell-specific autoantigen associated with T1D but the insulin autoantibodies (IAAs) are difficult to measure with proper sensitivity. T-cell assays for detection of autoreactive T-cells, such as insulin-specific T-cells, have also proven to be difficult to perform. The genetic risk of T1D is associated with the HLA gene region but the environmental factors also play an important role. The most studied environmental risk factors of T1D are enteroviruses and cow's milk which both affect the immune system through the gut. One hypothesis is that the insulin-specific immune response develops against bovine insulin in cow's milk during early infancy and later spreads to include human insulin. The aims of this study were to determine whether the separation of immunoglobulin (Ig)G from plasma would improve the sensitivity of the IAA assay and how insulin treatment affects the cellular immune response to insulin in newly diagnosed patients. Furthermore, the effect of insulin concentration in mother's breast milk on the development of antibodies to dietary insulin in the child was examined. Small intestinal biopsies were also obtained from children with T1D to characterize any immunological changes associated with T1D in the gut. The isolation of the IgG fraction from the plasma of T1D patients negative for plasma IAA led to detectable IAA levels that exceeded those in the control children. Thus the isolation of IgG may improve the sensitivity of the IAA assay. The effect of insulin treatment on insulin-specific T-cells was studied by culturing peripheral blood mononuclear cells with insulin. The insulin stimulation induced increased expression of regulatory T-cell markers, such as Foxp3, in those patients treated with insulin than in patients examined before initiating insulin treatment. This finding suggests that insulin treatment in patients with T1D stimulates regulatory T-cells in vivo and this may partly explain the difficulties in measuring autoantigen-specific T-cell responses in recently diagnosed patients. The stimulation of regulatory T-cells by insulin treatment may also explain the remission period often seen after initiating insulin treatment. In the third study we showed that insulin concentration in mother's breast milk correlates inversely with the levels of bovine insulin-specific antibodies in those infants who were exposed to cow's milk proteins in their diet, suggesting that human insulin in breast milk induces tolerance to dietary bovine insulin. However, in infants who later developed T1D-associated autoantibodies, the insulin concentration in their mother's breast milk was increased. This finding may indicate that in those children prone to β-cell autoimmunity, breast milk insulin does not promote tolerance to insulin. In the small intestinal biopsies the presence of several immunological markers were quantified with the RT-PCR. From these markers the expression of the interleukin (IL)-18 cytokine was significantly increased in the gut in patients with T1D compared with children with celiac disease or control children. The increased IL-18 expression lends further support for the hypothesis that the gut immune system is involved in the pathogenesis of T1D.
Resumo:
Gastric cancer is the fourth most common cancer and the second most common cause of cancer-related death worldwide. Due to lack of early symptoms, gastric cancer is characterized by late stage diagnosis and unsatisfactory options for curative treatment. Several genomic alterations have been identified in gastric cancer, but the major factors contributing to initiation and progression of gastric cancer remain poorly known. Gene copy number alterations play a key role in the development of gastric cancer, and a change in gene copy number is one of the fundamental mechanisms for a cancer cell to control the expression of potential oncogenes and tumor suppressor genes. This thesis aims at clarifying the complex genomic alterations of gastric cancer to identify novel molecular biomarkers for diagnostic purposes as well as for targeted treatment. To highlight genes of potential biological and clinical relevance, we carried out a systematic microarray-based survey of gene expression and copy number levels in primary gastric tumors and gastric cancer cell lines. Results were validated using immunohistochemistry, real-time qRT-PCR, and affinity capture-based transcript (TRAC) assay. Altogether 192 clinical gastric tissue samples and 7 gastric cancer cell lines were included in this study. Multiple chromosomal regions with recurrent copy number alterations were detected. The most frequent chromosomal alterations included gains at 7q, 8q, 17q, 19q, and 20q and losses at 9p, 18q, and 21q. Distinctive patterns of copy number alterations were detected for different histological subtypes (intestinal and diffuse) and for cancers located in different parts of the stomach. The impact of copy number alterations on gene expression was significant, as 6-10% of genes located in the regions of gains and losses also showed concomitant alterations in their expression. By combining the information from the DNA- and RNA-level analyses many novel gastric cancer-related genes, such as ALPK2, ENAH, HHIPL2, and OSMR, were identified. Independent genome-wide gene expression analysis of Finnish and Japanese gastric tumors revealed an additional set of genes that was differentially expressed in cancerous gastric tissues compared with normal tissue. Overexpression of one of these genes, CXCL1, was associated with an improved survival of gastric cancer. Thus, using an integrative microarray analysis, several novel genes were identified that may be critically important for gastric carcinogenesis. Further studies of these genes may lead to novel biomarkers for gastric cancer diagnosis and targeted therapy.
Resumo:
Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent human endopeptidases that can degrade virtually all components of the extracellular matrix (ECM). They are classified into eight subgroups according to their structure and into six subgroups based on their substrate-specificity. MMPs have been implicated in inflammation, tissue destruction, cell migration, arthritis, vascular remodeling, angiogenesis, and tumor growth and invasion. MMPs are inhibited by their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs). Different MMPs function in the same tasks depending on the tissue or cancer subtype. I investigated the role of recently discovered MMPs, especially MMPs-19 and -26, in intestinal inflammation, in intestinal and cutaneous wound healing, and in intestinal cancer. Several MMPs and TIMPs were studied to determine their exact location at tissue level and to obtain information on possible functions of MMPs in such tissues and diseases as the healthy intestine, inflammatory bowel disease (IBD), neonatal necrotizing enterocolitis (NEC), pyoderma gangrenosum (PG), and colorectal as well as pancreatic cancers. In latent celiac disease (CD), I attempted to identify markers to predict later onset of CD in children and adolescents. The main methods used were immunohistochemistry, in situ hybridization, and Taqman RT-PCR. My results show that MMP-26 is important for re-epithelialization in intestinal and cutaneous wound healing. In colon and pancreatic cancers, MMP-26 seems to be a marker of invasive potential, although it is not itself expressed at the invasive front. MMP-21 is upregulated in pancreatic cancer and may be associated with tumor differentiation. MMPs-19 and -28 are associated with normal tissue turnover in the intestine, but they disappear in tumor progression as if they were protective markers . MMP-12 is an essential protease in intestinal inflammation and tissue destruction, as seen here in NEC and in previous CD studies. In patients with type 1 diabetes (T1D), MMPs-1, -3, and -12 were upregulated in the intestinal mucosa. Furthermore, MMP-7 was strongly elevated in NEC. In a model of aberrant wound repair, PG, MMPs-8, -9, and 10 and TNFα may promote ECM destruction, while absence of MMP-1 and MMP-26 from keratinocytes retards re-epithelialization. Based on my results, I suggest MMP-26 to be considered a putative marker for poor prognosis in pancreatic and colon cancer. However, since it functions differently in various tissues and tumor subtypes, this use cannot be generalized. Furthermore, MMP-26 is a beneficial marker for wound healing if expressed by migrating epithelial cells. MMP-12 expression in latent CD patients warrants research in a larger patient population to confirm its role as a specific marker for CD in pathologically indistinct cases. MMP-7 should be considered one of the most crucial proteases in NEC-associated tissue destruction; hence, specific inhibitors of this MMP are worth investigating. In PG, TNFα inhibitors are potential therapeutic agents, as shown already in clinical trials. In conclusion, studies of several MMPs in specific diseases and in healthy tissues are needed to elucidate their roles at the tissue level. MMPs and TIMPs are not exclusively destructive or reparative in tissues. They seem to function differently in different tissues. To identify selective MMP inhibitors, we must thoroughly understand the MMP profile (degradome) and their functions in various organs not to interfere with normal reparative functions during wound repair or beneficial host-response effects during cancer initiation and growth.
Resumo:
Irritable bowel syndrome (IBS) is a common multifactorial functional intestinal disorder, the pathogenesis of which is not completely understood. Increasing scientific evidence suggests that microbes are involved in the onset and maintenance of IBS symptoms. The microbiota of the human gastrointestinal (GI) tract constitutes a massive and complex ecosystem consisting mainly of obligate anaerobic microorganisms making the use of culture-based methods demanding and prone to misinterpretation. To overcome these drawbacks, an extensive panel of species- and group-specific assays for an accurate quantification of bacteria from fecal samples with real-time PCR was developed, optimized, and validated. As a result, the target bacteria were detectable at a minimum concentration range of approximately 10 000 bacterial genomes per gram of fecal sample, which corresponds to the sensitivity to detect 0.000001% subpopulations of the total fecal microbiota. The real-time PCR panel covering both commensal and pathogenic microorganisms was assessed to compare the intestinal microbiota of patients suffering from IBS with a healthy control group devoid of GI symptoms. Both the IBS and control groups showed considerable individual variation in gut microbiota composition. Sorting of the IBS patients according to the symptom subtypes (diarrhea, constipation, and alternating predominant type) revealed that lower amounts of Lactobacillus spp. were present in the samples of diarrhea predominant IBS patients, whereas constipation predominant IBS patients carried increased amounts of Veillonella spp. In the screening of intestinal pathogens, 17% of IBS samples tested positive for Staphylococcus aureus, whereas no positive cases were discovered among healthy controls. Furthermore, the methodology was applied to monitor the effects of a multispecies probiotic supplementation on GI microbiota of IBS sufferers. In the placebo-controlled double-blind probiotic intervention trial of IBS patients, each supplemented probiotic strain was detected in fecal samples. Intestinal microbiota remained stable during the trial, except for Bifidobacterium spp., which increased in the placebo group and decreased in the probiotic group. The combination of assays developed and applied in this thesis has an overall coverage of 300-400 known bacterial species, along with the number of yet unknown phylotypes. Hence, it provides good means for studying the intestinal microbiota, irrespective of the intestinal condition and health status. In particular, it allows screening and identification of microbes putatively associated with IBS. The alterations in the gut microbiota discovered here support the hypothesis that microbes are likely to contribute to the pathophysiology of IBS. The central question is whether the microbiota changes described represent the cause for, rather than the effect of, disturbed gut physiology. Therefore, more studies are needed to determine the role and importance of individual microbial species or groups in IBS. In addition, it is essential that the microbial alterations observed in this study will be confirmed using a larger set of IBS samples of different subtypes, preferably from various geographical locations.
Resumo:
Tämä lisensiaatin tutkielma koostuu kolmesta osasta; kirjallisuuskatsauksesta, kokeellisesta osasta ja liitteistä. Iohexol on ionisoitumaton, trijodattu ja vesiliukoinen röntgenvarjoaine. Iohexolia on hyödynnetty lääketieteessä useita vuosia. Iohexolia on käytetty muun muassa angio- ja myelografiassa, lisäksi iohexolia on hyödynnetty arvioitaessa munuaiskerästen suodattumisnopeutta sekä suoliston läpäisevyyden muutoksia. Hevosen tulehduksellisessa suolistosairaudessa (Inflammatory bowel disease, IBD) suoliston rakenne ja sen läpäisevyys muuttuu; tyypillistä on tulehdussolujen kertyminen suoliston seinämään ja myös sidekudosmuodostusta saattaa esiintyä. Suolisto muutoksia saatetaan havaita sekä ohut- että paksusuolessa. IBD aiheuttaa hevoselle laihtumista, johtuen ravintoaineiden puutteellisesta imeytymisestä ja proteiinien menetyksestä suoleen suoliston häiriötilan yhteydessä. Tällä hetkellä IBD:n diagnostiikka perustuu tyypillisiin oireisiin, kliiniseen tutkimukseen, verinäytteisiin, glukoosin imeytymistestiin ja peräsuolesta otettuun koepalaan. IBD:n diagnostiikka on kuitenkin erittäin haastavaa ja tutkimusmenetelmiin liittyy lukuisia ongelmia, jotka vähentävät niiden luotettavuutta IBD:n diagnostiikassa. Tutkimuksemme tarkoituksena on kehittää hevosen IBD:n diagnostiikkaa entistä helpompaan, luotettavampaan ja turvallisempaan suuntaan. Tämän alustavan tutkimuksen tavoitteet olivat: (1) tutkia voidaanko iohexol havaita hevosen seerumissa oraalisen annostelun jälkeen ja (2) muodostaa iohexolin pitoisuuskuvaaja ajan funktiona terveillä hevosilla. Materiaalimme koostui kymmenestä terveestä hevosesta, joilla ei ollut havaittu laihtumista tai ripulia. Ennen iohexolin annostelua hevosille suoritettiin kliininen tutkimus ja verinäytteet otettiin maha-suolikanavan sairauden poissulkemiseksi. Hevosille suoritettiin myös mahalaukun tähystys. 16 tunnin paaston jälkeen 1 ml/kg Iohexolia annosteltiin 10 % -liuoksena nenämahaletkulla suoraan mahaan ja verinäytteet otettiin 0, 30, 60, 120, 180, 240, 300 ja 360 minuuttia annostelun jälkeen. Iohexolin pitoisuus määritettiin käyttämällä korkean erotuskyvyn nestekromatografiaa. Iohexolin pitoisuuksista tietyillä ajanhetkillä muodostettiin kuvaaja. Hevosilla ei havaittu maha-suolikanavan sairauksia. Kaikki hevoset olivat hyvässä kuntoluokassa ja mahalaukun tähystyksessä ei havaittu merkittäviä muutoksia. Verinäytteiden tulokset olivat viiterajoissa. Kaikki hevoset sietivät iohexolia hyvin ja haittavaikutuksia ei havaittu. Iohexol oli havaittavissa seerumissa 60 minuutin kuluttua annostelusta. Kuvaajassa voitiin havaita kaksi huippua. Statistiset menetelmät tukivat löydöksiä. Iohexol testi oli yksinkertainen suorittaa ja siihen ei liittynyt haittavaikutuksia. Annos 1ml/kg oli havaittavissa seerumissa. Iohexolin pitoisuuskuvaaja muodosti kaksi huippua, ja tämänkaltainen ilmiö on kuvattu kirjallisuudessa aikaisemmin useiden lääkkeiden tapauksessa. Hevosella ilmiö liittyy todennäköisesti maha-suolikanavan rakenteellisiin ja fysiologisiin eroavaisuuksiin ja lisätutkimuksia ilmiön varmistamiseksi tarvitaan. Iohexol näyttää olevan potentiaalinen merkkiaine suoliston läpäisevyyden arviointiin ja lisätutkimuksia IBD:tä sairastavien hevosten seerumin iohexolin pitoisuuksista verrattuna terveiden hevosten seerumin iohexolin pitoisuuksiin on suunnitteilla.