3 resultados para Inositol 1,4,5-trisphosphate (IP3)
em Helda - Digital Repository of University of Helsinki
Resumo:
A concept of god is a wholeness that an individual experiences as God. The Christian concept of god is based on triune God: Father, Son, and the Holy Spirit. The concept of god is examined in different kinds of contexts particularly between the 1940's and the 1970's. Many researches of school books have widely been made in Finland, but, however, only a few from the point of view of the concept of god. Considering this, the concept of god in the school books of Evangelical Lutheran and Orthodox religion from first to fourth grade in 1970–80 and 2000 is examined in this survey. Additionally, the concept of god in curricula between years 1970 and 2004 is studied. The perspective on the concept of god is the change in the course of time and denominational emphasis. As a first hypothesis, God the Father is represented in books in 21st century as a kind and loving figure. As a second hypothesis, the Trinity and the Holy Spirit get more space in Orthodox books comparing with the Lutheran books. Twelve school books of Evangelical Lutheran and Orthodox religion from first to fourth grade were used as a research material. The books were from four different series between the years 1978 and 2005. Teacher's guidebooks and student's exercise books were left outside of this survey. The research material was analyzed by using abductive content analysis and methodological triangulation. This study included both qualitative and quantitative aspects. The classification system which defined the classifying of concept of god from the research material was consisted of the basis of research material, former reseach, and subtext of used theories. The number of mentions in concept of god was higher in books from the 21st century. In Lutheran books, the change was seen as a growth of the category of God the Father. In Orthodox books, the trend was opposite: the category of Jesus the Son had grown. Differing from the presupposition, the features of loving God in new books had less emphasis than in older books in both churces. The mentions of the Holy Spirit and Trinity were marginal. In the Orthodox books, the categories were bigger, as it was presupposed. It could be seen, that the books confirmed the legalistic period of the concept of god on 3rd and 4th grades. The mentions of concept of god in curriculas have diminished and generalized. The diminution was seen most radically in the curriculum from the year 1994. The results tell something about social changes and views of innovation in curricula. In books the change was not perceived that bright. The idea of the concept of god getting shrank and decreased during the time can be refused.
Resumo:
The structures of (1→3),(1→4)-β-D-glucans of oat bran, whole-grain oats and barley and processed foods were analysed. Various methods of hydrolysis of β-glucan, the content of insoluble fibre of whole grains of oats and barley and the solution behaviour of oat and barley β-glucans were studied. The isolated soluble β-glucans of oat bran and whole-grain oats and barley were hydrolysed with lichenase, an enzyme specific for (1→3),(1→4)-β-D-β-glucans. The amounts of oligosaccharides produced from bran were analysed with capillary electrophoresis and those from whole-grains with high-performance anion-exchange chromatography with pulse-amperometric detection. The main products were 3-O-β-cellobiosyl-D-glucose and 3-O-β-cellotriosyl-D-glucose, the oligosaccharides which have a degree of polymerisation denoted by DP3 and DP4. Small differences were detected between soluble and insoluble β-glucans and also between β-glucans of oats and barley. These differences can only be seen in the DP3:DP4 ratio which was higher for barley than for oat and also higher for insoluble than for soluble β-glucan. A greater proportion of barley β-glucan remained insoluble than of oat β-glucan. The molar masses of soluble β-glucans of oats and barley were the same as were those of insoluble β-glucans of oats and barley. To analyse the effects of cooking, baking, fermentation and drying, β-glucan was isolated from porridge, bread and fermentate and also from their starting materials. More β-glucan was released after cooking and less after baking. Drying decreased the extractability for bread and fermentate but increased it for porridge. Different hydrolysis methods of β-glucan were compared. Acid hydrolysis and the modified AOAC method gave similar results. The results of hydrolysis with lichenase gave higher recoveries than the other two. The combination of lichenase hydrolysis and high-performance anion-exchange chromatography with pulse-amperometric detection was found best for the analysis of β-glucan content. The content of insoluble fibre was higher for barley than for oats and the amount of β-glucan in the insoluble fibre fraction was higher for oats than for barley. The flow properties of both water and aqueous cuoxam solutions of oat and barley β-glucans were studied. Shear thinning was stronger for the water solutions of oat β-glucan than for barley β-glucan. In aqueous cuoxam shear thinning was not observed at the same concentration as in water but only with high concentration solutions. Then the viscosity of barley β-glucan was slightly higher than that of oat β-glucan. The oscillatory measurements showed that the crossover point of the G´ and G´´ curves was much lower for barley β-glucan than for oat β-glucan indicating a higher tendency towards solid-like behaviour for barley β-glucan than for oat β-glucan.
Resumo:
Cereal water-soluble β-glucan [(1→3)(1→4)-β-D-glucan] has well-evidenced health benefits and it contributes to the texture properties of foods. These functions are characteristically dependent on the excellent viscosity forming ability of this cell wall polysaccharide. The viscosity is affected by the molar mass, solubility and conformation of β-glucan molecule, which are further known to be altered during food processing. This study focused on demonstrating the degradation of β-glucan in water solutions following the addition of ascorbic acid, during heat treatments or high pressure homogenisation. Furthermore, the motivation of this study was in the non-enzymatic degradation mechanisms, particularly in oxidative cleavage via hydroxyl radicals. The addition of ascorbic acid at food-related concentrations (2-50 mM), autoclaving (120°C) treatments, and high pressure homogenisation (300-1000 bar) considerably cleaved the β-glucan chains, determined as a steep decrease in the viscosity of β-glucan solutions and decrease in the molar mass of β-glucan. The cleavage was more intense in a solution of native β-glucan with co-extracted compounds than in a solution of highly purified β-glucan. Despite the clear and immediate process-related degradation, β-glucan was less sensitive to these treatments compared to other water-soluble polysaccharides previously reported in the literature. In particular, the highly purified β-glucan was relatively resistant to the autoclaving treatments without the addition of ferrous ions. The formation of highly oxidative free radicals was detected at the elevated temperatures, and the formation was considerably accelerated by added ferrous ions. Also ascorbic acid pronounced the formation of these oxidative radicals, and oxygen was simultaneously consumed by ascorbic acid addition and by heating the β-glucan solutions. These results demonstrated the occurrence of oxidative reactions, most likely the metal catalysed Fenton-like reactions, in the β-glucan solutions during these processes. Furthermore, oxidized functional groups (carbonyls) were formed along the β-glucan chain by the treatments, including high pressure homogenisation, evidencing the oxidation of β-glucan by these treatments. The degradative forces acting on the particles in the high pressure homogenisation are generally considered to be the mechanical shear, but as shown here, carbohydrates are also easily degraded during the process, and oxidation may have a role in the modification of polysaccharides by this technique. In the present study, oat β-glucan was demonstrated to be susceptible to degradation during aqueous processing by non-enzymatic degradation mechanisms. Oxidation was for the first time shown to be a highly relevant degradation mechanism of β-glucan in food processing.