3 resultados para HotSpot JVM

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the past decades agricultural intensification has caused dramatic population declines in a wide range of taxa related to farmland habitats, including farmland birds. In this thesis, I studied how boreal farmland landscape characteristics and agricultural land use affect the abundance and diversity of farmland birds using extensive field data collected by territory mapping of breeding farmland birds in various parts of Finland. My results show that the area and openness of agricultural areas are key determinants of farmland bird abundance and distribution. A landscape composition with enough open farmland combined with key habitats such as farmyards and wetland is likely to provide essential prerequisites for the occurrence of a rich farmland avifauna. In Finland, the majority of large areas suitable for open habitat specialists are located in southern and western parts of the country. However, the diversity of the species with an unfavourable conservation status in Europe (SPECs) had notable hotspot areas in northern and north-western agricultural areas. I found that in boreal agroecosystems farmland birds favour fields with springtime vegetative cover, especially agricultural grasslands and set-asides. Hence, in the spring cereal dominated Finnish agroecosystems it is the absence of field vegetation that may limit populations of many farmland bird species. It is likely that the decrease of crops providing vegetative cover in the spring, such as permanent grasslands, cultivated grass, and autumn-sown cereals, has greatly contributed to the declines of Finnish farmland birds. Grass crops have persistently declined in Finland as a consequence of specialization in crop production and the large-scale decline in livestock husbandry. Small-scale non-crop habitats, especially ditches and ditch margins, are also important for many bird species in the Finnish agroecosystems, but have dramatically declined during the last decades. A major problem for farmland bird conservation in Finland is the conflict between landscape structure and agricultural management. Areas with mixed and cattle farming are virtually absent from the large agricultural plains of southern and south-western Finland, where the landscape structure is more likely to be favourable for rich farmland bird assemblages. On the other hand, mixed and cattle farming is still rather frequent in northern and central parts of the country, where the landscape structure is not suitable for many farmland specialist birds requiring open landscapes. My results provide useful guidelines for farmland bird conservation, and imply that considerable attention needs to be paid to landscape factors when selecting areas for various conservational management actions, such as agri-environment schemes. Actions promoting the abundance of set-asides, grass crops, and ditches would markedly benefit Finnish farmland bird populations. Organic farming may benefit farmland birds, but it is not clear how general its beneficial effect is in boreal agroecosystems. The most urgent action aiming to preserve farmland biodiversity would be to support re-introducing and sustaining cattle farming by environmental subsidies. This would be especially beneficial in the southern parts of Finland, where the landscape characteristics and abundance of agricultural areas are most suitable for farmland birds and where cattle farming is currently rare.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ongoing rapid fragmentation of tropical forests is a major threat to global biodiversity. This is because many of the tropical forests are so-called biodiversity 'hotspots', areas that host exceptional species richness and concentrations of endemic species. Forest fragmentation has negative ecological and genetic consequences for plant survival. Proposed reasons for plant species' loss in forest fragments are, e.g., abiotic edge effects, altered species interactions, increased genetic drift, and inbreeding depression. To be able to conserve plants in forest fragments, the ecological and genetic processes that threaten the species have to be understood. That is possible only after obtaining adequate information on their biology, including taxonomy, life history, reproduction, and spatial and genetic structure of the populations. In this research, I focused on the African violet (genus Saintpaulia), a little-studied conservation flagship from the Eastern Arc Mountains and Coastal Forests hotspot of Tanzania and Kenya. The main objective of the research was to increase understanding of the life history, ecology and population genetics of Saintpaulia that is needed for the design of appropriate conservation measures. A further aim was to provide population-level insights into the difficult taxonomy of Saintpaulia. Ecological field work was conducted in a relatively little fragmented protected forest in the Amani Nature Reserve in the East Usambara Mountains, in northeastern Tanzania, complemented by population genetic laboratory work and ecological experiments in Helsinki, Finland. All components of the research were conducted with Saintpaulia ionantha ssp. grotei, which forms a taxonomically controversial population complex in the study area. My results suggest that Saintpaulia has good reproductive performance in forests with low disturbance levels in the East Usambara Mountains. Another important finding was that seed production depends on sufficient pollinator service. The availability of pollinators should thus be considered in the in situ management of threatened populations. Dynamic population stage structures were observed suggesting that the studied populations are demographically viable. High mortality of seedlings and juveniles was observed during the dry season but this was compensated by ample recruitment of new seedlings after the rainy season. Reduced tree canopy closure and substrate quality are likely to exacerbate seedling and juvenile mortality, and, therefore, forest fragmentation and disturbance are serious threats to the regeneration of Saintpaulia. Restoration of sufficient shade to enhance seedling establishment is an important conservation measure in populations located in disturbed habitats. Long-term demographic monitoring, which enables the forecasting of a population s future, is also recommended in disturbed habitats. High genetic diversities were observed in the populations, which suggest that they possess the variation that is needed for evolutionary responses in a changing environment. Thus, genetic management of the studied populations does not seem necessary as long as the habitats remain favourable for Saintpaulia. The observed high levels of inbreeding in some of the populations, and the reduced fitness of the inbred progeny compared to the outbred progeny, as revealed by the hand-pollination experiment, indicate that inbreeding and inbreeding depression are potential mechanisms contributing to the extinction of Saintpaulia populations. The relatively weak genetic divergence of the three different morphotypes of Saintpaulia ionantha ssp. grotei lend support to the hypothesis that the populations in the Usambara/lowlands region represent a segregating metapopulation (or metapopulations), where subpopulations are adapting to their particular environments. The partial genetic and phenological integrity, and the distinct trailing habit of the morphotype 'grotei' would, however, justify its placement in a taxonomic rank of its own, perhaps in a subspecific rank.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Caucasus region is a hotspot of biodiversity and is one of the few areas in the Northern Hemisphere which harbor Pleistocene glacial refugia. The region encompasses Armenia, Azerbaijan, Georgia, the southernmost European Russia, NE Turkey, and northern Iran. The study on fungal composition of the Caucasus region and its connection and possible contribution to the present mycota of Europe has largely escaped empirical scrutiny. Using taxonomic surveys, phylogenetic reconstruction methods, haplotype analysis, and similarity tests, this study has aimed to, 1) summarize the knowledge on the occurrence of corticioids and polypores in the Caucasus region, 2) resolve the phylogenetic relationships of selected, resupinate wood-inhabiting basidiomycetes for which the Caucasus region is currently the mere, or one of the noteworthy areas of distribution, and, 3) assess the similarity of Caucasian corticioid fungi to those of Europe and important areas in the Northern Hemisphere, and to examine the significance of the Caucasus region as a glacial refugium for these fungi. This study provides the first catalogue of corticioids and polypores (635 species) occurring in the Caucasus region. The phylogeny and systematics of the Caucasian resupinate taxa in focus has been resolved and the usefulness of some morphological characters has been re-evaluated. In this context, four new genera and two new species were described and five new combinations were proposed, two of which were supplemented with modern descriptions. The species composition of corticioids in the Caucasus region is found to be distinctly more similar to Europe and North America than to East Asia and India. The highest molecular diversity and within population pairwise distance for Peniophorella praetermissa has been detected in the Caucasus and East Asia, with the isolates of the latter area being highly divergent from the European ones. This, and the assignment of root haplotype to the Caucasian isolates in a haplotype network for Phlebia tuberucalta and P. livida, call attention to the role of the Caucasus region in shaping the current mycota of Europe.