50 resultados para Homeric Responses
em Helda - Digital Repository of University of Helsinki
Resumo:
A 26-hour English reading comprehension course was taught to two groups of second year Finnish Pharmacy students: a virtual group (33 students) and a teacher-taught group (25 students). The aims of the teaching experiment were to find out: 1.What has to be taken into account when teaching English reading comprehension to students of pharmacy via the Internet and using TopClass? 2. How will the learning outcomes of the virtual group and the control group differ? 3. How will the students and the Department of Pharmacy respond to the different and new method, i.e. the virtual teaching method? 4. Will it be possible to test English reading comprehension learning material using the groupware tool TopClass? The virtual exercises were written within the Internet authoring environment, TopClass. The virtual group was given the reading material and grammar booklet on paper, but they did the reading comprehension tasks (written by the teacher), autonomously via the Internet. The control group was taught by the same teacher in 12 2-hour sessions, while the virtual group could work independently within the given six weeks. Both groups studied the same material: ten pharmaceutical articles with reading comprehension tasks as well as grammar and vocabulary exercises. Both groups took the same final test. Students in both groups were asked to evaluate the course using a 1 to 5 rating scale and they were also asked to assess their respective courses verbally. A detailed analysis of the different aspects of the student evaluation is given. Conclusions: 1.The virtual students learned pharmaceutical English relatively well but not significantly better than the classroom students 2. The overall student satisfaction in the virtual pharmacy English reading comprehension group was found to be higher than that in the teacher-taught control group. 3. Virtual learning is easier for linguistically more able students; less able students need more time with the teacher. 4. The sample in this study is rather small, but it is a pioneering study. 5. The Department of Pharmacy in the University of Helsinki wishes to incorporate virtual English reading comprehension teaching in its curriculum. 6. The sophisticated and versatile TopClass system is relatively easy for a traditional teacher and quite easy for the students to learn. It can be used e.g. for automatic checking of routine answers and document transfer, which both lighten the workloads of both parties. It is especially convenient for teaching reading comprehension. Key words: English reading comprehension, teacher-taught class, virtual class, attitudes of students, learning outcomes
Resumo:
The aim of the present study was to advance the methodology and use of time series analysis to quantify dynamic structures in psychophysiological processes and thereby to produce information on spontaneously coupled physiological responses and their behavioral and experiential correlates. Series of analyses using both simulated and empirical cardiac (IBI), electrodermal (EDA), and facial electromyographic (EMG) data indicated that, despite potential autocorrelated structures, smoothing increased the reliability of detecting response coupling from an interindividual distribution of intraindividual measures and that especially the measures of covariance produced accurate information on the extent of coupled responses. This methodology was applied to analyze spontaneously coupled IBI, EDA, and facial EMG responses and vagal activity in their relation to emotional experience and personality characteristics in a group of middle-aged men (n = 37) during the administration of the Rorschach testing protocol. The results revealed new characteristics in the relationship between phasic end-organ synchronization and vagal activity, on the one hand, and individual differences in emotional adjustment to novel situations on the other. Specifically, it appeared that the vagal system is intimately related to emotional and social responsivity. It was also found that the lack of spontaneously synchronized responses is related to decreased energetic arousal (e.g., depression, mood). These findings indicate that the present process analysis approach has many advantages for use in both experimental and applied research, and that it is a useful new paradigm in psychophysiological research. Keywords: Autonomic Nervous System; Emotion; Facial Electromyography; Individual Differences; Spontaneous Responses; Time Series Analysis; Vagal System
Resumo:
In the present work, effects of stimulus repetition and change in a continuous stimulus stream on the processing of somatosensory information in the human brain were studied. Human scalp-recorded somatosensory event-related potentials (ERPs) and magnetoencephalographic (MEG) responses rapidly diminished with stimulus repetition when mechanical or electric stimuli were applied to fingers. On the contrary, when the ERPs and multi-unit a ctivity (MUA) were directly recorded from the primary (SI) and secondary (SII) somatosensory cortices in a monkey, there was no marked decrement in the somatosensory responses as a function of stimulus repetition. These results suggest that this rate effect is not due to the response diminution in the SI and SII cortices. Obviously the responses to the first stimulus after a long "silent" period are nhanced due to unspecific initial orientation, originating in more broadly distributed and/or deeper neural structures, perhaps in the prefrontal cortices. With fast repetition rates not only the late unspecific but also some early specific somatosensory ERPs were diminished in amplitude. The fast decrease of the ERPs as a function of stimulus repetition is mainly due to the disappearance of the orientation effect and with faster repetition rates additively due to stimulus specific refractoriness. A sudden infrequent change in the continuous stimulus stream also enhanced somatosensory MEG responses to electric stimuli applied to different fingers. These responses were quite similar to those elicited by the deviant stimuli alone when the frequent standard stimuli were omitted. This enhancement was obviously due to the release from refractoriness because the neural structures generating the responses to the infrequent deviants had more time to recover from the refractoriness than the respective structures for the standards. Infrequent deviant mechanical stimuli among frequent standard stimuli also enhanced somatosensory ERPs and, in addition, they elicited a new negative wave which did not occur in the deviants-alone condition. This extra negativity could be recorded to deviations in the stimulation site and in the frequency of the vibratory stimuli. This response is probably a somatosensory analogue of the auditory mismatch negativity (MMN) which has been suggested to reflect a neural mismatch process between the sensory input and the sensory memory trace.
Resumo:
Prostate cancer is the most common noncutaneous malignancy and the second leading cause of cancer mortality in men. In 2004, 5237 new cases were diagnosed and altogether 25 664 men suffered from prostate cancer in Finland (Suomen Syöpärekisteri). Although extensively investigated, we still have a very rudimentary understanding of the molecular mechanisms leading to the frequent transformation of the prostate epithelium. Prostate cancer is characterized by several unique features including the multifocal origin of tumors and extreme resistance to chemotherapy, and new treatment options are therefore urgently needed. The integrity of genomic DNA is constantly challenged by genotoxic insults. Cellular responses to DNA damage involve elegant checkpoint cascades enforcing cell cycle arrest, thus facilitating damage repair, apoptosis or cellular senescence. Cellular DNA damage triggers the activation of tumor suppressor protein p53 and Wee1 kinase which act as executors of the cellular checkpoint responses. These are essential for genomic integrity, and are activated in early stages of tumorigenesis in order to function as barriers against tumor formation. Our work establishes that the primary human prostatic epithelial cells and prostatic epithelium have unexpectedly indulgent checkpoint surveillance. This is evidenced by the absence of inhibitory Tyr15 phosphorylation on Cdk2, lack of p53 response, radioresistant DNA synthesis, lack of G1/S and G2/M phase arrest, and presence of persistent gammaH2AX damage foci. We ascribe the absence of inhibitory Tyr15 phosphorylation to low levels of Wee1A, a tyrosine kinase and negative regulator of cell cycle progression. Ectopic Wee1A kinase restored Cdk2-Tyr15 phosphorylation and efficiently rescued the ionizing radiation-induced checkpoints in the human prostatic epithelial cells. As variability in the DNA damage responses has been shown to underlie susceptibility to cancer, our results imply that a suboptimal checkpoint arrest may greatly increase the accumulation of genetic lesions in the prostate epithelia. We also show that small molecules can restore p53 function in prostatic epithelial cells and may serve as a paradigm for the development of future therapeutic agents for the treatment of prostate cancer We hypothesize that the prostate has evolved to activate the damage surveillance pathways and molecules involved in these pathways only to certain stresses in extreme circumstances. In doing so, this organ inadvertently made itself vulnerable to genotoxic stress, which may have implications in malignant transformation. Recognition of the limited activity of p53 and Wee1 in the prostate could drive mechanism-based discovery of preventative and therapeutic agents.
Resumo:
Olfaction, the sense of smell, has many important functions in humans. Human responses to odors show substantial individual variation. Olfactory receptor genes have been identified and other genes may also influence olfaction. However, the proportion of phenotypic variation in odor response due to genetic variation remains largely unknown. Little is also known about which genes modify specific responses to odors. This study aimed to elucidate genetic and environmental influences on human responses to odors. Individuals from Finnish families (n=146) and Australian (n=413), British (n=163), Danish (n=336), and Finnish (n=399) twins rated intensity and pleasantness of a set of 12 (families) or 6 (twins) odors and tried to identify the odors. In addition, the participants rated their own sense of smell and annoyance experienced with different environmental odors. The odor stimuli of a commercial smell test (The Brief Smell Identification Test; banana, chocolate, cinnamon, gasoline, lemon, onion, paint thinner, pineapple, rose, smoke, soap, and turpentine) were presented in the family study. Based on the results of the family study and a literature survey, a new set of odor stimuli (androstenone, chocolate, cinnamon, isovaleric acid, lemon, and turpentine) was designed for the twin studies. In the family sample, heritabilities of the traits were estimated and underlying genomic regions were searched using a genome-wide linkage scan. In the pooled twin sample, variation in the measured traits was decomposed into genetic and environmental components using quantitative genetic modeling. In addition, associations between nongenetic factors (e.g., sex, age, and smoking) and olfactory-related traits were explored. Suggestive evidence for a genetic linkage for pleasantness of cinnamon at a locus on chromosome 4q32.3 emerged from the family sample. High heritability for the pleasantness of cinnamon was found in the family but not the twin study. Heritability of perceived intensity of androstenone odor was determined to be ~30% in the twin sample. A strong genetic correlation between perceived intensity and pleasantness of androstenone, in the absence of any environmental correlation, indicated that only the genetic correlation explained the phenotypic correlation between the traits (r=-0.27) and that the traits were influenced by an overlapping set of genes. Self-rated olfactory function appeared to reflect the odor annoyance experienced rather than actual olfactory acuity or genetic involvement. Results from nongenetic analyses supported the speculated superiority of females' olfactory abilities, the age-related diminishing of olfactory acuity, and the influences of experience-dependent factors on odor responses. This was the first study to estimate heritabilities and perform linkage screens for individual odors. A genetic effect was detected for only a few responses to specific odors, suggesting the predominance of environmental effects in odor perceptions.
Resumo:
Diet is a major player in the maintenance of health and onset of many diseases of public health importance. The food choice is known to be largely influenced by sensory preferences. However, in many cases it is unclear whether these preferences and dietary behaviors are innate or acquired. The aim of this thesis work was to study the extent to which the individual differences in dietary responses, especially in liking for sweet taste, are influenced by genetic factors. Several traits measuring the responses to sweetness and other dietary variables were applied in four studies: in British (TwinsUK) and Finnish (FinnTwin12 and FinnTwin16) twin studies and in a Finnish migraine family study. All the subjects were adults and they participated in chemosensory measurements (taste and smell tests) and filled in food behavior questionnaires. Further, it was studied, whether the correlations among the variables are mediated by genetic or environmental factors and where in the genome the genes influencing the heritable traits are located. A study of young adult Finnish twins (FinnTwin16, n=4388) revealed that around 40% of the food use is attributable to genetic factors and that the common, childhood environment does not affect the food use even shortly after moving from the parents home. Both the family study (n=146) and the twin studies (British twins, n=663) showed that around half of the variation in the liking for sweetness is inherited. The same result was obtained both by the chemosensory measurements (heritability 41-49%) and the questionnaire variables (heritability 31-54%). By contrast, the intensity perception of sweetness or the responses to saltiness were not influenced by genetic factors. Further, a locus influencing the use-frequency of sweet foods was identified on chromosome 16p. A closer examination of the relationships among the variables based on 663 British twins revealed that several genetic and environmental correlations exist among the different measures of liking for sweetness. However, these correlations were not very strong (range 0.06-0.55) implying that the instruments used measure slightly different aspects of the phenomenon. In addition, the assessment of the associations among responses to fatty foods, dieting behaviors, and body mass index in twin populations (TwinsUK n=1027 and FinnTwin12 n=299) showed that the dieting behaviors (cognitive restraint, uncontrolled eating, and emotional eating) mediate the relationship between obesity and diet. In conclusion, the work increased the understanding of the background variables of human eating behavior. Genetic effects were shown to underlie the variation of many dietary traits, such as liking for sweet taste, use of sweet foods, and dieting behaviors. However, the responses to salty taste were shown to be mainly determined by environmental factors and thus should more easily be modifiable by dietary education, exposure, and learning than sweet taste preferences. Although additional studies are needed to characterize the genetic element located on chromosome 16 that influences the use-frequency of sweet foods, the results underline the importance of inherited factors on human eating behavior.
Resumo:
In boreal forests, microorganisms have a pivotal role in nutrient and water supply of trees as well as in litter decomposition and nutrient cycling. This reinforces the link between above-ground and below-ground communities in the context of sustainable productivity of forest ecosystems. In northern boreal forests, the diversity of microbes associated with the trees is high compared to the number of distinct tree species. In this thesis, the aim was to study whether conspecific tree individuals harbour different soil microbes and whether the growth of the trees and the community structure of the associated microbes are connected. The study was performed in a clonal field trial of Norway spruce, which was established in a randomized block design in a clear-cut area. Since out-planting in 1994, the spruce clones showed two-fold growth differences. The fast-growing spruce clones were associated with a more diverse community of ectomycorrhizal fungi than the slow-growing spruce clones. These growth performance groups also differed with respect to other aspects of the associated soil microorganisms: the species composition of ectomycorrhizal fungi, in the amount of extraradical fungal mycelium, in the structure of bacterial community associated with the mycelium, and in the structure of microbial community in the organic layer. The communities of fungi colonizing needle litter of the spruce clones in the field did not differ and the loss of litter mass after two-years decomposition was equal. In vitro, needles of the slow-growing spruce clones were colonized by a more diverse community of endophytic fungi that were shown to be significant needle decomposers. This study showed a relationship between the growth of Norway spruce clones and the community structure of the associated soil microbes. Spatial heterogeneity in soil microbial community was connected with intraspecific variation of trees. The latter may therefore influence soil biodiversity in monospecific forests.
Resumo:
Postglacial climate changes and vegetation responses were studied using a combination of biological and physical indicators preserved in lake sediments. Low-frequency trends, high-frequency events and rapid shifts in temperature and moisture balance were probed using pollen-based quantitative temperature reconstructions and oxygen-isotopes from authigenic carbonate and aquatic cellulose, respectively. Pollen and plant macrofossils were employed to shed light on the presence and response rates of plant populations in response to climate changes, particularly focusing on common boreal and temperate tree species. Additional geochemical and isotopic tracers facilitated the interpretation of pollen- and oxygen-isotope data. The results show that the common boreal trees were present in the Baltic region (~55°N) during the Lateglacial, which contrasts with the traditional view of species refuge locations in the south-European peninsulas during the glacial/interglacial cycles. The findings of this work are in agreement with recent paleoecological and genetic evidence suggesting that scattered populations of tree species persisted at higher latitudes, and that these taxa were likely limited to boreal trees. Moreover, the results demonstrate that stepwise changes in plant communities took place in concert with major climate fluctuations of the glacial/interglacial transition. Postglacial climate trends in northern Europe were characterized by rise, maxima and fall in temperatures and related changes in moisture balance. Following the deglaciation of the Northern Hemisphere and the early Holocene reorganization of the ice-ocean-atmosphere system, the long-term temperature trends followed gradually decreasing summer insolation. The early Holocene (~11,700-8000 cal yr BP) was overall cool, moist and oceanic, although the earliest Holocene effective humidity may have been low particularly in the eastern part of northern Europe. The gradual warming trend was interrupted by a cold event ~8200 cal yr BP. The maximum temperatures, ~1.5-3.0°C above modern values, were attained ~8000-4000 cal yr BP. This mid-Holocene peak warmth was coupled with low lake levels, low effective humidity and summertime drought. The late Holocene (~4000 cal yr BP-present) was characterized by gradually decreasing temperatures, higher lake levels and higher effective humidity. Moreover, the gradual trends of the late Holocene were probably superimposed by higher-frequency variability. The spatial variability of the Holocene temperature and moisture balance patterns were tentatively attributed to the differing heat capacities of continents and oceans, changes in atmospheric circulation modes and position of sites and subregions with respect to large water bodies and topographic barriers. The combination of physical and biological proxy archives is a pivotal aspect of this work, because non-climatic factors, such as postglacial migration, disturbances and competitive interactions, can influence reshuffling of vegetation and hence, pollen-based climate reconstructions. The oxygen-isotope records and other physical proxies presented in this work manifest that postglacial climate changes were the main driver of the establishment and expansion of temperate and boreal tree populations, and hence, large-scale and long-term vegetation patterns were in dynamic equilibrium with climate. A notable exception to this pattern may be the postglacial invasion of Norway spruce and the related suppression of mid-Holocene temperate forest. This salient step in north-European vegetation history, the development of the modern boreal ecosystem, cannot be unambiguously explained by current evidence of postglacial climate changes. The results of this work highlight that plant populations, including long-lived trees, may be able to respond strikingly rapidly to changes in climate. Moreover, interannual and seasonal variation and extreme events can exert an important influence on vegetation reshuffling. Importantly, the studies imply that the presence of diffuse refuge populations or local stands among the prevailing vegetation may have provided the means for extraordinarily rapid vegetation responses. Hence, if scattered populations are not provided and tree populations are to migrate long distances, their capacity to keep up with predicted rates of future climate change may be lower than previously thought.
Resumo:
The focus of this study is on statistical analysis of categorical responses, where the response values are dependent of each other. The most typical example of this kind of dependence is when repeated responses have been obtained from the same study unit. For example, in Paper I, the response of interest is the pneumococcal nasopharengyal carriage (yes/no) on 329 children. For each child, the carriage is measured nine times during the first 18 months of life, and thus repeated respones on each child cannot be assumed independent of each other. In the case of the above example, the interest typically lies in the carriage prevalence, and whether different risk factors affect the prevalence. Regression analysis is the established method for studying the effects of risk factors. In order to make correct inferences from the regression model, the associations between repeated responses need to be taken into account. The analysis of repeated categorical responses typically focus on regression modelling. However, further insights can also be gained by investigating the structure of the association. The central theme in this study is on the development of joint regression and association models. The analysis of repeated, or otherwise clustered, categorical responses is computationally difficult. Likelihood-based inference is often feasible only when the number of repeated responses for each study unit is small. In Paper IV, an algorithm is presented, which substantially facilitates maximum likelihood fitting, especially when the number of repeated responses increase. In addition, a notable result arising from this work is the freely available software for likelihood-based estimation of clustered categorical responses.