25 resultados para HUMAN BRAIN ACTIVITY
em Helda - Digital Repository of University of Helsinki
Resumo:
Humans are a social species with the internal capability to process social information from other humans. To understand others behavior and to react accordingly, it is necessary to infer their internal states, emotions and aims, which are conveyed by subtle nonverbal bodily cues such as postures, gestures, and facial expressions. This thesis investigates the brain functions underlying the processing of such social information. Studies I and II of this thesis explore the neural basis of perceiving pain from another person s facial expressions by means of functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG). In Study I, observing another s facial expression of pain activated the affective pain system (previously associated with self-experienced pain) in accordance with the intensity of the observed expression. The strength of the response in anterior insula was also linked to the observer s empathic abilities. The cortical processing of facial pain expressions advanced from the visual to temporal-lobe areas at similar latencies (around 300 500 ms) to those previously shown for emotional expressions such as fear or disgust. Study III shows that perceiving a yawning face is associated with middle and posterior STS activity, and the contagiousness of a yawn correlates negatively with amygdalar activity. Study IV explored the brain correlates of interpreting social interaction between two members of the same species, in this case human and canine. Observing interaction engaged brain activity in very similar manner for both species. Moreover, the body and object sensitive brain areas of dog experts differentiated interaction from noninteraction in both humans and dogs whereas in the control subjects, similar differentiation occurred only for humans. Finally, Study V shows the engagement of the brain area associated with biological motion when exposed to the sounds produced by a single human being walking. However, more complex pattern of activation, with the walking sounds of several persons, suggests that as the social situation becomes more complex so does the brain response. Taken together, these studies demonstrate the roles of distinct cortical and subcortical brain regions in the perception and sharing of others internal states via facial and bodily gestures, and the connection of brain responses to behavioral attributes.
Resumo:
Selective attention refers to the process in which certain information is actively selected for conscious processing, while other information is ignored. The aim of the present studies was to investigate the human brain mechanisms of auditory and audiovisual selective attention with functional magnetic resonance imaging (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). The main focus was on attention-related processing in the auditory cortex. It was found that selective attention to sounds strongly enhances auditory cortex activity associated with processing the sounds. In addition, the amplitude of this attention-related modulation was shown to increase with the presentation rate of attended sounds. Attention to the pitch of sounds and to their location appeared to enhance activity in overlapping auditory-cortex regions. However, attention to location produced stronger activity than attention to pitch in the temporo-parietal junction and frontal cortical regions. In addition, a study on bimodal attentional selection found stronger audiovisual than auditory or visual attention-related modulations in the auditory cortex. These results were discussed in light of Näätänen s attentional-trace theory and other research concerning the brain mechanisms of selective attention.
Resumo:
This thesis examines brain networks involved in auditory attention and auditory working memory using measures of task performance, brain activity, and neuroanatomical connectivity. Auditory orienting and maintenance of attention were compared with visual orienting and maintenance of attention, and top-down controlled attention was compared to bottom-up triggered attention in audition. Moreover, the effects of cognitive load on performance and brain activity were studied using an auditory working memory task. Corbetta and Shulman s (2002) model of visual attention suggests that what is known as the dorsal attention system (intraparietal sulcus/superior parietal lobule, IPS/SPL and frontal eye field, FEF) is involved in the control of top-down controlled attention, whereas what is known as the ventral attention system (temporo-parietal junction, TPJ and areas of the inferior/middle frontal gyrus, IFG/MFG) is involved in bottom-up triggered attention. The present results show that top-down controlled auditory attention also activates IPS/SPL and FEF. Furthermore, in audition, TPJ and IFG/MFG were activated not only by bottom-up triggered attention, but also by top-down controlled attention. In addition, the posterior cerebellum and thalamus were activated by top-down controlled attention shifts and the ventromedial prefrontal cortex (VMPFC) was activated by to-be-ignored, but attention-catching salient changes in auditory input streams. VMPFC may be involved in the evaluation of environmental events causing the bottom-up triggered engagement of attention. Auditory working memory activated a brain network that largely overlapped with the one activated by top-down controlled attention. The present results also provide further evidence of the role of the cerebellum in cognitive processing: During auditory working memory tasks, both activity in the posterior cerebellum (the crus I/II) and reaction speed increased when the cognitive load increased. Based on the present results and earlier theories on the role of the cerebellum in cognitive processing, the function of the posterior cerebellum in cognitive tasks may be related to the optimization of response speed.
Resumo:
Neuronal oscillations are thought to underlie interactions between distinct brain regions required for normal memory functioning. This study aimed at elucidating the neuronal basis of memory abnormalities in neurodegenerative disorders. Magnetoencephalography (MEG) was used to measure oscillatory brain signals in patients with Alzheimer s disease (AD), a neurodegenerative disease causing progressive cognitive decline, and mild cognitive impairment (MCI), a disorder characterized by mild but clinically significant complaints of memory loss without apparent impairment in other cognitive domains. Furthermore, to help interpret our AD/MCI results and to develop more powerful oscillatory MEG paradigms for clinical memory studies, oscillatory neuronal activity underlying declarative memory, the function which is afflicted first in both AD and MCI, was investigated in a group of healthy subjects. An increased temporal-lobe contribution coinciding with parieto-occipital deficits in oscillatory activity was observed in AD patients: sources in the 6 12.5 Hz range were significantly stronger in the parieto-occipital and significantly weaker in the right temporal region in AD patients, as compared to MCI patients and healthy elderly subjects. Further, the auditory steady-state response, thought to represent both evoked and induced activity, was enhanced in AD patients, as compared to controls, possibly reflecting decreased inhibition in auditory processing and deficits in adaptation to repetitive stimulation with low relevance. Finally, the methodological study revealed that successful declarative encoding and retrieval is associated with increases in occipital gamma and right hemisphere theta power in healthy unmedicated subjects. This result suggests that investigation of neuronal oscillations during cognitive performance could potentially be used to investigate declarative memory deficits in AD patients. Taken together, the present results provide an insight on the role of brain oscillatory activity in memory function and memory disorders.
Resumo:
Until recently, objective investigation of the functional development of the human brain in vivo was challenged by the lack of noninvasive research methods. Consequently, fairly little is known about cortical processing of sensory information even in healthy infants and children. Furthermore, mechanisms by which early brain insults affect brain development and function are poorly understood. In this thesis, we used magnetoencephalography (MEG) to investigate development of cortical somatosensory functions in healthy infants, very premature infants at risk for neurological disorders, and adolescents with hemiplegic cerebral palsy (CP). In newborns, stimulation of the hand activated both the contralateral primary (SIc) and secondary somatosensory cortices (SIIc). The activation patterns differed from those of adults, however. Some of the earliest SIc responses, constantly present in adults, were completely lacking in newborns and the effect of sleep stage on SIIc responses differed. These discrepancies between newborns and adults reflect the still developmental stage of the newborns’ somatosensory system. Its further maturation was demonstrated by a systematic transformation of the SIc response pattern with age. The main early adultlike components were present by age two. In very preterm infants, at term age, the SIc and SIIc were activated at similar latencies as in healthy fullterm newborns, but the SIc activity was weaker in the preterm group. The SIIc response was absent in four out of the six infants with brain lesions of the underlying hemisphere. Determining the prognostic value of this finding remains a subject for future studies, however. In the CP adolescents with pure subcortical lesions, contrasting their unilateral symptoms, the SIc responses of both hemispheres differed from those of controls: For example the distance between SIc representation areas for digits II and V was shorter bilaterally. In four of the five CP patients with corticosubcortical brain lesions, no normal early SIc responses were evoked by stimulation of the palsied hand. The varying differences in neuronal functions, underlying the common clinical symptoms, call for investigation of more precisely designed rehabilitation strategies resting on knowledge about individual functional alterations in the sensorimotor networks.
Resumo:
In the present work, effects of stimulus repetition and change in a continuous stimulus stream on the processing of somatosensory information in the human brain were studied. Human scalp-recorded somatosensory event-related potentials (ERPs) and magnetoencephalographic (MEG) responses rapidly diminished with stimulus repetition when mechanical or electric stimuli were applied to fingers. On the contrary, when the ERPs and multi-unit a ctivity (MUA) were directly recorded from the primary (SI) and secondary (SII) somatosensory cortices in a monkey, there was no marked decrement in the somatosensory responses as a function of stimulus repetition. These results suggest that this rate effect is not due to the response diminution in the SI and SII cortices. Obviously the responses to the first stimulus after a long "silent" period are nhanced due to unspecific initial orientation, originating in more broadly distributed and/or deeper neural structures, perhaps in the prefrontal cortices. With fast repetition rates not only the late unspecific but also some early specific somatosensory ERPs were diminished in amplitude. The fast decrease of the ERPs as a function of stimulus repetition is mainly due to the disappearance of the orientation effect and with faster repetition rates additively due to stimulus specific refractoriness. A sudden infrequent change in the continuous stimulus stream also enhanced somatosensory MEG responses to electric stimuli applied to different fingers. These responses were quite similar to those elicited by the deviant stimuli alone when the frequent standard stimuli were omitted. This enhancement was obviously due to the release from refractoriness because the neural structures generating the responses to the infrequent deviants had more time to recover from the refractoriness than the respective structures for the standards. Infrequent deviant mechanical stimuli among frequent standard stimuli also enhanced somatosensory ERPs and, in addition, they elicited a new negative wave which did not occur in the deviants-alone condition. This extra negativity could be recorded to deviations in the stimulation site and in the frequency of the vibratory stimuli. This response is probably a somatosensory analogue of the auditory mismatch negativity (MMN) which has been suggested to reflect a neural mismatch process between the sensory input and the sensory memory trace.
Resumo:
Intact function of working memory (WM) is essential for children and adults to cope with every day life. Children with deficits in WM mechanisms have learning difficulties that are often accompanied by behavioral problems. The neural processes subserving WM, and brain structures underlying this system, continue to develop during childhood till adolescence and young adulthood. With functional magnetic resonance imaging (fMRI) it is possible to investigate the organization and development of WM. The present thesis aimed to investigate, using behavioral and neuroimaging methods, whether mnemonic processing of spatial and nonspatial visual information is segregated in the developing and mature human brain. A further aim in this research was to investigate the organization and development of audiospatial and visuospatial information processing in WM. The behavioral results showed that spatial and nonspatial visual WM processing is segregated in the adult brain. The fMRI result in children suggested that memory load related processing of spatial and nonspatial visual information engages common cortical networks, whereas selective attention to either type of stimuli recruits partially segregated areas in the frontal, parietal and occipital cortices. Deactivation mechanisms that are important in the performance of WM tasks in adults are already operational in healthy school-aged children. Electrophysiological evidence suggested segregated mnemonic processing of visual and auditory location information. The results of the development of audiospatial and visuospatial WM demonstrate that WM performance improves with age, suggesting functional maturation of underlying cognitive processes and brain areas. The development of the performance of spatial WM tasks follows a different time course in boys and girls indicating a larger degree of immaturity in the male than female WM systems. Furthermore, the differences in mastering auditory and visual WM tasks may indicate that visual WM reaches functional maturity earlier than the corresponding auditory system. Spatial WM deficits may underlie some learning difficulties and behavioral problems related to impulsivity, difficulties in concentration, and hyperactivity. Alternatively, anxiety or depressive symptoms may affect WM function and the ability to concentrate, being thus the primary cause of poor academic achievement in children.
Resumo:
Ornithine decarboxylase (ODC) regulates the synthesis of polyamines which are involved in many cellular functions e.g. proliferation and differentiation. Due to its critical role, ODC is a tightly regulated enzyme by antizymes and antizyme inhibitors. If the regulation fails, the activity of ODC increases and may lead to malignant transformation of a cell. Increased ODC activity is found in many common cancers, including colon, prostate, and breast cancer. In a transformed cell, dynamics of the actin cytoskeleton is disturbed. A small G-protein, RhoA regulates organization of the cytoskeleton, and its overactivity increases malignant potential of the cell. The present results indicate that covalent attachment of polyamines by transglutaminase is a physiological means of regulating the activity of RhoA. The translocation of RhoA to the plasma membrane, where it exerts its activity is dependent on the presence of catalytically active ODC. As the overactivity of ODC and RhoA are implicated in cell transformation, the results provide a mechanistic explanation of the interrelationship between the polyamine metabolism and the reorganization of the actin cytoskeleton occurring in cancer cells. ODC and polyamines have also an important role in the function of central nervous system. They participate in the regulation of brain morphogenesis in embryos. In adult nervous tissue, polyamines regulate K+ and glutamate channels. K+ inward rectifying channels control membrane potentials and NMDA-type glutamate receptors (NMDAR) regulate synaptic plasticity. High ODC activity and polyamine levels are considered important in the development of ischemic brain damage and they are implicated in the pathogenesis of Alzheimer s disease (AD). A homolog of ODC was cloned from a human brain cDNA library, and several alternatively spliced variants were detected in human brain and testis. The novel protein was nevertheless devoid of ODC catalytic activity. It was subsequently found to be a novel inductor of ODC activity and polyamine synthesis, called antizyme inhibitor 2 (AZIN2). The accumulation of AZIN2 in vesicle-like formations along the axons and beneath the plasma membrane of neurons as well as in steroid hormone producing Leydig cells and luteal cells of the gonads implies that AZIN2 plays a role in secretion and vesicle trafficking. An accumulation of AZIN2 was detected also in specimens of AD brains. This increased expression of AZIN2 was specific for AD and was not found in brains with other neurodegenerative diseases including CADASIL or dementia with Lewy bodies.
Resumo:
Visual information processing in brain proceeds in both serial and parallel fashion throughout various functionally distinct hierarchically organised cortical areas. Feedforward signals from retina and hierarchically lower cortical levels are the major activators of visual neurons, but top-down and feedback signals from higher level cortical areas have a modulating effect on neural processing. My work concentrates on visual encoding in hierarchically low level cortical visual areas in human brain and examines neural processing especially in cortical representation of visual field periphery. I use magnetoencephalography and functional magnetic resonance imaging to measure neuromagnetic and hemodynamic responses during visual stimulation and oculomotor and cognitive tasks from healthy volunteers. My thesis comprises six publications. Visual cortex forms a great challenge for modeling of neuromagnetic sources. My work shows that a priori information of source locations are needed for modeling of neuromagnetic sources in visual cortex. In addition, my work examines other potential confounding factors in vision studies such as light scatter inside the eye which may result in erroneous responses in cortex outside the representation of stimulated region, and eye movements and attention. I mapped cortical representations of peripheral visual field and identified a putative human homologue of functional area V6 of the macaque in the posterior bank of parieto-occipital sulcus. My work shows that human V6 activates during eye-movements and that it responds to visual motion at short latencies. These findings suggest that human V6, like its monkey homologue, is related to fast processing of visual stimuli and visually guided movements. I demonstrate that peripheral vision is functionally related to eye-movements and connected to rapid stream of functional areas that process visual motion. In addition, my work shows two different forms of top-down modulation of neural processing in the hierachically lowest cortical levels; one that is related to dorsal stream activation and may reflect motor processing or resetting signals that prepare visual cortex for change in the environment and another local signal enhancement at the attended region that reflects local feed-back signal and may perceptionally increase the stimulus saliency.
Resumo:
Tactile sensation plays an important role in everyday life. While the somatosensory system has been studied extensively, the majority of information has come from studies using animal models. Recent development of high-resolution anatomical and functional imaging techniques has enabled the non-invasive study of human somatosensory cortex and thalamus. This thesis provides new insights into the functional organization of the human brain areas involved in tactile processing using magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). The thesis also demonstrates certain optimizations of MEG and fMRI methods. Tactile digit stimulation elicited stimulus-specific responses in a number of brain areas. Contralateral activation was observed in somatosensory thalamus (Study II), primary somatosensory cortex (SI; I, III, IV), and post-auditory belt area (III). Bilateral activation was observed in secondary somatosensory cortex (SII; II, III, IV). Ipsilateral activation was found in the post-central gyrus (area 2 of SI cortex; IV). In addition, phasic deactivation was observed within ipsilateral SI cortex and bilateral primary motor cortex (IV). Detailed investigation of the tactile responses demonstrated that the arrangement of distal-proximal finger representations in area 3b of SI in humans is similar to that found in monkeys (I). An optimized MEG approach was sufficient to resolve such fine detail in functional organization. The SII region appeared to contain double representations for fingers and toes (II). The detection of activations in the SII region and thalamus improved at the individual and group levels when cardiac-gated fMRI was used (II). Better detection of body part representations at the individual level is an important improvement, because identification of individual representations is crucial for studying brain plasticity in somatosensory areas. The posterior auditory belt area demonstrated responses to both auditory and tactile stimuli (III), implicating this area as a physiological substrate for the auditory-tactile interaction observed in earlier psychophysical studies. Comparison of different smoothing parameters (III) demonstrated that proper evaluation of co-activation should be based on individual subject analysis with minimal or no smoothing. Tactile input consistently influenced area 3b of the human ipsilateral SI cortex (IV). The observed phasic negative fMRI response is proposed to result from interhemispheric inhibition via trans-callosal connections. This thesis contributes to a growing body of human data suggesting that processing of tactile stimuli involves multiple brain areas, with different spatial patterns of cortical activation for different stimuli.
Resumo:
Acute pain has substantial survival value because of its protective function in the everyday environment. Instead, chronic pain lacks survival and adaptive function, causes great amount of individual suffering, and consumes the resources of the society due to the treatment costs and loss of production. The treatment of chronic pain has remained challenging because of inadequate understanding of mechanisms working at different levels of the nervous system in the development, modulation, and maintenance of chronic pain. Especially in unclear chronic pain conditions the treatment may be suboptimal because it can not be targeted to the underlying mechanisms. Noninvasive neuroimaging techniques have greatly contributed to our understanding of brain activity associated with pain in healthy individuals. Many previous studies, focusing on brain activations to acute experimental pain in healthy individuals, have consistently demonstrated a widely-distributed network of brain regions that participate in the processing of acute pain. The aim of the present thesis was to employ non-invasive brain imaging to better understand the brain mechanisms in patients suffering from chronic pain. In Study I, we used magnetoencephalography (MEG) to measure cortical responses to painful laser stimulation in healthy individuals for optimization of the stimulus parameters for patient studies. In Studies II and III, we monitored with MEG the cortical processing of touch and acute pain in patients with complex regional pain syndrome (CRPS). We found persisting plastic changes in the hand representation area of the primary somatosensory (SI) cortex, suggesting that chronic pain causes cortical reorganization. Responses in the posterior parietal cortex to both tactile and painful laser stimulation were attenuated, which could be associated with neglect-like symptoms of the patients. The primary motor cortex reactivity to acute pain was reduced in patients who had stronger spontaneous pain and weaker grip strength in the painful hand. The tight coupling between spontaneous pain and motor dysfunction supports the idea that motor rehabilitation is important in CRPS. In Studies IV and V we used MEG and functional magnetic resonance imaging (fMRI) to investigate the central processing of touch and acute pain in patients who suffered from recurrent herpes simplex virus infections and from chronic widespread pain in one side of the body. With MEG, we found plastic changes in the SI cortex, suggesting that many different types of chronic pain may be associated with similar cortical reorganization. With fMRI, we found functional and morphological changes in the central pain circuitry, as an indication of central contribution for the pain. These results show that chronic pain is associated with morphological and functional changes in the brain, and that such changes can be measured with functional imaging.
Resumo:
Aim: So far, most of the cognitive neuroscience studies investigating the development of brain activity in childhood have made comparisons between different age groups and ignored the individual stage of cognitive development. Given the wide variation in the rate of cognitive development, this study argues that chronological age alone cannot explain the developmental changes in brain activity. This study demonstrates how Piaget s theory and information on child s individual stage of development can complement the age-related evaluations of brain oscillatory activity. In addition, the relationship between cognitive development and working memory is investigated. Method: A total of 33 children (17 11-year-olds, 16 14-year-olds) participated in this study. The study consisted of behavioural tests and an EEG experiment. Behavioral tests included two Piagetian tasks (the Volume and Density task, the Pendulum task) and Raven s Standard Progressive Matrices task. During EEG experiment, subjects performed a modified version of the Sternberg s memory search paradigm which consisted of an auditorily presented memory set of 4 words and a probe word following these. The EEG data was analyzed using the event-related desynchronization / synchronization (ERD/ERS) method. The Pendulum task was used to assess the cognitive developmental stage of each subject and to form four groups based on age (11- or 14-year-olds) and cognitive developmental stage (concrete or formal operational stage). Group comparisons between these four groups were performed for the EEG data. Results and conclusions: Both age- and cognitive stage-related differences in brain oscillatory activity were found between the four groups. Importantly, age-related changes similar to those reported by previous studies were found also in this study, but these changes were modified by developmental stage. In addition, the results support a strong link between working memory and cognitive development by demonstrating differences in memory task related brain activity and cognitive developmental stages. Based on these findings it is suggested that in the future, comparisons of development of brain activity should not be based only on age but also on the individual cognitive developmental stage.
Resumo:
What can the statistical structure of natural images teach us about the human brain? Even though the visual cortex is one of the most studied parts of the brain, surprisingly little is known about how exactly images are processed to leave us with a coherent percept of the world around us, so we can recognize a friend or drive on a crowded street without any effort. By constructing probabilistic models of natural images, the goal of this thesis is to understand the structure of the stimulus that is the raison d etre for the visual system. Following the hypothesis that the optimal processing has to be matched to the structure of that stimulus, we attempt to derive computational principles, features that the visual system should compute, and properties that cells in the visual system should have. Starting from machine learning techniques such as principal component analysis and independent component analysis we construct a variety of sta- tistical models to discover structure in natural images that can be linked to receptive field properties of neurons in primary visual cortex such as simple and complex cells. We show that by representing images with phase invariant, complex cell-like units, a better statistical description of the vi- sual environment is obtained than with linear simple cell units, and that complex cell pooling can be learned by estimating both layers of a two-layer model of natural images. We investigate how a simplified model of the processing in the retina, where adaptation and contrast normalization take place, is connected to the nat- ural stimulus statistics. Analyzing the effect that retinal gain control has on later cortical processing, we propose a novel method to perform gain control in a data-driven way. Finally we show how models like those pre- sented here can be extended to capture whole visual scenes rather than just small image patches. By using a Markov random field approach we can model images of arbitrary size, while still being able to estimate the model parameters from the data.