15 resultados para HEAVY

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores melodic and harmonic features of heavy metal, and while doing so, explores various methods of music analysis; their applicability and limitations regarding the study of heavy metal music. The study is built on three general hypotheses according to which 1) acoustic characteristics play a significant role for chord constructing in heavy metal, 2) heavy metal has strong ties and similarities with other Western musical styles, and 3) theories and analytical methods of Western art music may be applied to heavy metal. It seems evident that in heavy metal some chord structures appear far more frequently than others. It is suggested here that the fundamental reason for this is the use of guitar distortion effect. Subsequently, theories as to how and under what principles heavy metal is constructed need to be put under discussion; analytical models regarding the classification of consonance and dissonance and chord categorization are here revised to meet the common practices of this music. It is evident that heavy metal is not an isolated style of music; it is seen here as a cultural fusion of various musical styles. Moreover, it is suggested that the theoretical background to the construction of Western music and its analysis can offer invaluable insights to heavy metal. However, the analytical methods need to be reformed to some extent to meet the characteristics of the music. This reformation includes an accommodation of linear and functional theories that has been found rather rarely in music theory and musicology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several excited states of Ds and Bs mesons have been discovered in the last six years: BaBar, Cleo and Belle discovered the very narrow states D(s0)*(2317)+- and D(s1)(2460)+- in 2003, and CDF and DO Collaborations reported the observation of two narrow Bs resonances, B(s1)(5830)0 and B*(s2)(5840)0 in 2007. To keep up with experiment, meson excited states should be studied from the theoretical aspect as well. The theory that describes the interaction between quarks and gluons is quantum chromodynamics (QCD). In this thesis the properties of the meson states are studied using the discretized version of the theory - lattice QCD. This allows us to perform QCD calculations from first principles, and "measure" not just energies but also the radial distributions of the states on the lattice. This gives valuable theoretical information on the excited states, as we can extract the energy spectrum of a static-light meson up to D wave states (states with orbital angular momentum L=2). We are thus able to predict where some of the excited meson states should lie. We also pay special attention to the order of the states, to detect possible inverted spin multiplets in the meson spectrum, as predicted by H. Schnitzer in 1978. This inversion is connected to the confining potential of the strong interaction. The lattice simulations can also help us understand the strong interaction better, as the lattice data can be treated as "experimental" data and used in testing potential models. In this thesis an attempt is made to explain the energies and radial distributions in terms of a potential model based on a one-body Dirac equation. The aim is to get more information about the nature of the confining potential, as well as to test how well the one-gluon exchange potential explains the short range part of the interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The description of quarks and gluons, using the theory of quantum chromodynamics (QCD), has been known for a long time. Nevertheless, many fundamental questions in QCD remain unanswered. This is mainly due to problems in solving the theory at low energies, where the theory is strongly interacting. AdS/CFT is a duality between a specific string theory and a conformal field theory. Duality provides new tools to solve the conformal field theory in the strong coupling regime. There is also some evidence that using the duality, one can get at least qualitative understanding of how QCD behaves at strong coupling. In this thesis, we try to address some issues related to QCD and heavy ion collisions, applying the duality in various ways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes methods for the reliable identification of hadronically decaying tau leptons in the search for heavy Higgs bosons of the minimal supersymmetric standard model of particle physics (MSSM). The identification of the hadronic tau lepton decays, i.e. tau-jets, is applied to the gg->bbH, H->tautau and gg->tbH+, H+->taunu processes to be searched for in the CMS experiment at the CERN Large Hadron Collider. Of all the event selections applied in these final states, the tau-jet identification is the single most important event selection criterion to separate the tiny Higgs boson signal from a large number of background events. The tau-jet identification is studied with methods based on a signature of a low charged track multiplicity, the containment of the decay products within a narrow cone, an isolated electromagnetic energy deposition, a non-zero tau lepton flight path, the absence of electrons, muons, and neutral hadrons in the decay signature, and a relatively small tau lepton mass compared to the mass of most hadrons. Furthermore, in the H+->taunu channel, helicity correlations are exploited to separate the signal tau jets from those originating from the W->taunu decays. Since many of these identification methods rely on the reconstruction of charged particle tracks, the systematic uncertainties resulting from the mechanical tolerances of the tracking sensor positions are estimated with care. The tau-jet identification and other standard selection methods are applied to the search for the heavy neutral and charged Higgs bosons in the H->tautau and H+->taunu decay channels. For the H+->taunu channel, the tau-jet identification is redone and optimized with a recent and more detailed event simulation than previously in the CMS experiment. Both decay channels are found to be very promising for the discovery of the heavy MSSM Higgs bosons. The Higgs boson(s), whose existence has not yet been experimentally verified, are a part of the standard model and its most popular extensions. They are a manifestation of a mechanism which breaks the electroweak symmetry and generates masses for particles. Since the H->tautau and H+->taunu decay channels are important for the discovery of the Higgs bosons in a large region of the permitted parameter space, the analysis described in this thesis serves as a probe for finding out properties of the microcosm of particles and their interactions in the energy scales beyond the standard model of particle physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to improve option risk monitoring by examining the information content of implied volatility and by introducing the calculation of a single-sum expected risk exposure similar to the Value-at-Risk. The figure is calculated in two steps. First, there is a need to estimate the value of a portfolio of options for a number of different market scenarios, while the second step is to summarize the information content of the estimated scenarios into a single-sum risk measure. This involves the use of probability theory and return distributions, which confronts the user with the problems of non-normality in the return distribution of the underlying asset. Here the hyperbolic distribution is used to describe one alternative for dealing with heavy tails. Results indicate that the information content of implied volatility is useful when predicting future large returns in the underlying asset. Further, the hyperbolic distribution provides a good fit to historical returns enabling a more accurate definition of statistical intervals and extreme events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the thermal photon transverse momentum spectra and elliptic flow in $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions at RHIC and in $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb collisions at the LHC, using an ideal-hydrodynamical framework which is constrained by the measured hadron spectra at RHIC and LHC. The sensitivity of the results to the QCD-matter equation of state and to the photon emission rates is studied, and the photon $v_2$ is discussed in the light of the photonic $p_T$ spectrum measured by the PHENIX Collaboration. In particular, we make a prediction for the thermal photon $p_T$ spectra and elliptic flow for the current LHC Pb+Pb collisions.