15 resultados para Geometry, Solid.
em Helda - Digital Repository of University of Helsinki
Resumo:
Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.
Resumo:
Many active pharmaceutical ingredients (APIs) have both anhydrate and hydrate forms. Due to the different physicochemical properties of solid forms, the changes in solid-state may result in therapeutic, pharmaceutical, legal and commercial problems. In order to obtain good solid dosage form quality and performance, there is a constant need to understand and control these phase transitions during manufacturing and storage. Thus it is important to detect and also quantify the possible transitions between the different forms. In recent years, vibrational spectroscopy has become an increasingly popular tool to characterise the solid-state forms and their phase transitions. It offers several advantages over other characterisation techniques including an ability to obtain molecular level information, minimal sample preparation, and the possibility of monitoring changes non-destructively in-line. Dehydration is the phase transition of hydrates which is frequently encountered during the dosage form production and storage. The aim of the present thesis was to investigate the dehydration behaviour of diverse pharmaceutical hydrates by near infrared (NIR), Raman and terahertz pulsed spectroscopic (TPS) monitoring together with multivariate data analysis. The goal was to reveal new perspectives for investigation of the dehydration at the molecular level. Solid-state transformations were monitored during dehydration of diverse hydrates on hot-stage. The results obtained from qualitative experiments were used to develop a method and perform the quantification of the solid-state forms during process induced dehydration in a fluidised bed dryer. Both in situ and in-line process monitoring and quantification was performed. This thesis demonstrated the utility of vibrational spectroscopy techniques and multivariate modelling to monitor and investigate dehydration behaviour in situ and during fluidised bed drying. All three spectroscopic methods proved complementary in the study of dehydration. NIR spectroscopy models could quantify the solid-state forms in the binary system, but were unable to quantify all the forms in the quaternary system. Raman spectroscopy models on the other hand could quantify all four solid-state forms that appeared upon isothermal dehydration. The speed of spectroscopic methods makes them applicable for monitoring dehydration and the quantification of multiple forms was performed during phase transition. Thus the solid-state structure information at the molecular level was directly obtained. TPS detected the intermolecular phonon modes and Raman spectroscopy detected mostly the changes in intramolecular vibrations. Both techniques revealed information about the crystal structure changes. NIR spectroscopy, on the other hand was more sensitive to water content and hydrogen bonding environment of water molecules. This study provides a basis for real time process monitoring using vibrational spectroscopy during pharmaceutical manufacturing.
Resumo:
In order to improve and continuously develop the quality of pharmaceutical products, the process analytical technology (PAT) framework has been adopted by the US Food and Drug Administration. One of the aims of PAT is to identify critical process parameters and their effect on the quality of the final product. Real time analysis of the process data enables better control of the processes to obtain a high quality product. The main purpose of this work was to monitor crucial pharmaceutical unit operations (from blending to coating) and to examine the effect of processing on solid-state transformations and physical properties. The tools used were near-infrared (NIR) and Raman spectroscopy combined with multivariate data analysis, as well as X-ray powder diffraction (XRPD) and terahertz pulsed imaging (TPI). To detect process-induced transformations in active pharmaceutical ingredients (APIs), samples were taken after blending, granulation, extrusion, spheronisation, and drying. These samples were monitored by XRPD, Raman, and NIR spectroscopy showing hydrate formation in the case of theophylline and nitrofurantoin. For erythromycin dihydrate formation of the isomorphic dehydrate was critical. Thus, the main focus was on the drying process. NIR spectroscopy was applied in-line during a fluid-bed drying process. Multivariate data analysis (principal component analysis) enabled detection of the dehydrate formation at temperatures above 45°C. Furthermore, a small-scale rotating plate device was tested to provide an insight into film coating. The process was monitored using NIR spectroscopy. A calibration model, using partial least squares regression, was set up and applied to data obtained by in-line NIR measurements of a coating drum process. The predicted coating thickness agreed with the measured coating thickness. For investigating the quality of film coatings TPI was used to create a 3-D image of a coated tablet. With this technique it was possible to determine coating layer thickness, distribution, reproducibility, and uniformity. In addition, it was possible to localise defects of either the coating or the tablet. It can be concluded from this work that the applied techniques increased the understanding of physico-chemical properties of drugs and drug products during and after processing. They additionally provided useful information to improve and verify the quality of pharmaceutical dosage forms
Resumo:
There is intense activity in the area of theoretical chemistry of gold. It is now possible to predict new molecular species, and more recently, solids by combining relativistic methodology with isoelectronic thinking. In this thesis we predict a series of solid sheet-type crystals for Group-11 cyanides, MCN (M=Cu, Ag, Au), and Group-2 and 12 carbides MC2 (M=Be-Ba, Zn-Hg). The idea of sheets is then extended to nanostrips which can be bent to nanorings. The bending energies and deformation frequencies can be systematized by treating these molecules as an elastic bodies. In these species Au atoms act as an 'intermolecular glue'. Further suggested molecular species are the new uncongested aurocarbons, and the neutral Au_nHg_m clusters. Many of the suggested species are expected to be stabilized by aurophilic interactions. We also estimate the MP2 basis-set limit of the aurophilicity for the model compounds [ClAuPH_3]_2 and [P(AuPH_3)_4]^+. Beside investigating the size of the basis-set applied, our research confirms that the 19-VE TZVP+2f level, used a decade ago, already produced 74 % of the present aurophilic attraction energy for the [ClAuPH_3]_2 dimer. Likewise we verify the preferred C4v structure for the [P(AuPH_3)_4]^+ cation at the MP2 level. We also perform the first calculation on model aurophilic systems using the SCS-MP2 method and compare the results to high-accuracy CCSD(T) ones. The recently obtained high-resolution microwave spectra on MCN molecules (M=Cu, Ag, Au) provide an excellent testing ground for quantum chemistry. MP2 or CCSD(T) calculations, correlating all 19 valence electrons of Au and including BSSE and SO corrections, are able to give bond lengths to 0.6 pm, or better. Our calculated vibrational frequencies are expected to be better than the currently available experimental estimates. Qualitative evidence for multiple Au-C bonding in triatomic AuCN is also found.
Resumo:
Resumo:
Pressurised hot water extraction (PHWE) exploits the unique temperature-dependent solvent properties of water minimising the use of harmful organic solvents. Water is environmentally friendly, cheap and easily available extraction medium. The effects of temperature, pressure and extraction time in PHWE have often been studied, but here the emphasis was on other parameters important for the extraction, most notably the dimensions of the extraction vessel and the stability and solubility of the analytes to be extracted. Non-linear data analysis and self-organising maps were employed in the data analysis to obtain correlations between the parameters studied, recoveries and relative errors. First, pressurised hot water extraction (PHWE) was combined on-line with liquid chromatography-gas chromatography (LC-GC), and the system was applied to the extraction and analysis of polycyclic aromatic hydrocarbons (PAHs) in sediment. The method is of superior sensitivity compared with the traditional methods, and only a small 10 mg sample was required for analysis. The commercial extraction vessels were replaced by laboratory-made stainless steel vessels because of some problems that arose. The performance of the laboratory-made vessels was comparable to that of the commercial ones. In an investigation of the effect of thermal desorption in PHWE, it was found that at lower temperatures (200ºC and 250ºC) the effect of thermal desorption is smaller than the effect of the solvating property of hot water. At 300ºC, however, thermal desorption is the main mechanism. The effect of the geometry of the extraction vessel on recoveries was studied with five specially constructed extraction vessels. In addition to the extraction vessel geometry, the sediment packing style and the direction of water flow through the vessel were investigated. The geometry of the vessel was found to have only minor effect on the recoveries, and the same was true of the sediment packing style and the direction of water flow through the vessel. These are good results because these parameters do not have to be carefully optimised before the start of extractions. Liquid-liquid extraction (LLE) and solid-phase extraction (SPE) were compared as trapping techniques for PHWE. LLE was more robust than SPE and it provided better recoveries and repeatabilities than did SPE. Problems related to blocking of the Tenax trap and unrepeatable trapping of the analytes were encountered in SPE. Thus, although LLE is more labour intensive, it can be recommended over SPE. The stabilities of the PAHs in aqueous solutions were measured using a batch-type reaction vessel. Degradation was observed at 300ºC even with the shortest heating time. Ketones and quinones and other oxidation products were observed. Although the conditions of the stability studies differed considerably from the extraction conditions in PHWE, the results indicate that the risk of analyte degradation must be taken into account in PHWE. The aqueous solubilities of acenaphthene, anthracene and pyrene were measured, first below and then above the melting point of the analytes. Measurements below the melting point were made to check that the equipment was working, and the results were compared with those obtained earlier. Good agreement was found between the measured and literature values. A new saturation cell was constructed for the solubility measurements above the melting point of the analytes because the flow-through saturation cell could not be used above the melting point. An exponential relationship was found between the solubilities measured for pyrene and anthracene and temperature.
Resumo:
This PhD Thesis is about certain infinite-dimensional Grassmannian manifolds that arise naturally in geometry, representation theory and mathematical physics. From the physics point of view one encounters these infinite-dimensional manifolds when trying to understand the second quantization of fermions. The many particle Hilbert space of the second quantized fermions is called the fermionic Fock space. A typical element of the fermionic Fock space can be thought to be a linear combination of the configurations m particles and n anti-particles . Geometrically the fermionic Fock space can be constructed as holomorphic sections of a certain (dual)determinant line bundle lying over the so called restricted Grassmannian manifold, which is a typical example of an infinite-dimensional Grassmannian manifold one encounters in QFT. The construction should be compared with its well-known finite-dimensional analogue, where one realizes an exterior power of a finite-dimensional vector space as the space of holomorphic sections of a determinant line bundle lying over a finite-dimensional Grassmannian manifold. The connection with infinite-dimensional representation theory stems from the fact that the restricted Grassmannian manifold is an infinite-dimensional homogeneous (Kähler) manifold, i.e. it is of the form G/H where G is a certain infinite-dimensional Lie group and H its subgroup. A central extension of G acts on the total space of the dual determinant line bundle and also on the space its holomorphic sections; thus G admits a (projective) representation on the fermionic Fock space. This construction also induces the so called basic representation for loop groups (of compact groups), which in turn are vitally important in string theory / conformal field theory. The Thesis consists of three chapters: the first chapter is an introduction to the backround material and the other two chapters are individually written research articles. The first article deals in a new way with the well-known question in Yang-Mills theory, when can one lift the action of the gauge transformation group on the space of connection one forms to the total space of the Fock bundle in a compatible way with the second quantized Dirac operator. In general there is an obstruction to this (called the Mickelsson-Faddeev anomaly) and various geometric interpretations for this anomaly, using such things as group extensions and bundle gerbes, have been given earlier. In this work we give a new geometric interpretation for the Faddeev-Mickelsson anomaly in terms of differentiable gerbes (certain sheaves of categories) and central extensions of Lie groupoids. The second research article deals with the question how to define a Dirac-like operator on the restricted Grassmannian manifold, which is an infinite-dimensional space and hence not in the landscape of standard Dirac operator theory. The construction relies heavily on infinite-dimensional representation theory and one of the most technically demanding challenges is to be able to introduce proper normal orderings for certain infinite sums of operators in such a way that all divergences will disappear and the infinite sum will make sense as a well-defined operator acting on a suitable Hilbert space of spinors. This research article was motivated by a more extensive ongoing project to construct twisted K-theory classes in Yang-Mills theory via a Dirac-like operator on the restricted Grassmannian manifold.
Resumo:
The purpose of this study is to analyse the development and understanding of the idea of consensus in bilateral dialogues among Anglicans, Lutherans and Roman Catholics. The source material consists of representative dialogue documents from the international, regional and national dialogues from the 1960s until 2006. In general, the dialogue documents argue for agreement/consensus based on commonality or compatibility. Each of the three dialogue processes has specific characteristics and formulates its argument in a unique way. The Lutheran-Roman Catholic dialogue has a particular interest in hermeneutical questions. In the early phases, the documents endeavoured to describe the interpretative principles that would allow the churches to together proclaim the Gospel and to identify the foundation on which the agreement in the church is based. This investigation ended up proposing a notion of basic consensus , which later developed into a form of consensus that seeks to embrace, not to dismiss differences (so-called differentiated consensus ). The Lutheran-Roman Catholic agreement is based on a perspectival understanding of doctrine. The Anglican-Roman Catholic dialogue emphasises the correctness of interpretations. The documents consciously look towards a common future , not the separated past. The dialogue s primary interpretative concept is koinonia. The texts develop a hermeneutics of authoritative teaching that has been described as the rule of communion . The Anglican-Lutheran dialogue is characterised by an instrumental understanding of doctrine. Doctrinal agreement is facilitated by the ideas of coherence, continuity and substantial emphasis in doctrine. The Anglican-Lutheran dialogue proposes a form of sufficient consensus that considers a wide set of doctrinal statements and liturgical practices to determine whether an agreement has been reached to the degree that, although not complete , is sufficient for concrete steps towards unity. Chapter V discusses the current challenges of consensus as an ecumenically viable concept. In this part, I argue that the acceptability of consensus as an ecumenical goal is based not only the understanding of the church but more importantly on the understanding of the nature and function of the doctrine. The understanding of doctrine has undergone significant changes during the time of the ecumenical dialogues. The major shift has been from a modern paradigm towards a postmodern paradigm. I conclude with proposals towards a way to construct a form of consensus that would survive philosophical criticism, would be theologically valid and ecumenically acceptable.
Resumo:
Osteoporosis is a skeletal disorder characterized by compromised bone strength that predisposes to increased fracture risk. Childhood and adolescence are critical periods for bone mass gain. Peak bone mass is mostly acquired by the age of 18 years and is an important determinant of adult bone health and lifetime risk for fractures. Medications, especially glucocorticoids (GCs), chronic inflammation, decreased physical activity, hormonal deficiencies, delayed puberty, and poor nutrition may predispose children and adolescents with a chronic disease to impaired bone health. In this work, we studied overall bone health, the incidence and prevalence of fractures in children and adolescents who were treated for juvenile idiopathic arthritis (JIA) or had undergone solid organ transplantation. The first study cohort included 62 patients diagnosed with JIA and treated with GCs. The epidemiology of fractures after transplantation was investigated in 196 patients and a more detailed analysis of bone health determinants was performed on 40 liver (LTx) and 106 renal (RTx) transplantation patients. Bone mineral density (BMD) and vertebral morphology were assessed by dual-energy x-ray absorptiometry. Standard radiographs were obtained to detect vertebral fractures and to determine bone age; BMD values were adjusted for skeletal maturity. Our study showed that median BMD values were subnormal in all patient cohorts. The values were highest in patients with JIA and lowest in patients with LTx. Age at transplantation influenced BMD values in LTx but not RTx patients; BMD values were higher in patients who had LTx before the age of two years. BMD was lowest during the immediate posttransplantation years and increased subnormally during puberty. Delayed skeletal maturation was common in all patient groups. The prevalence of vertebral fractures ranged from 10% to 19% in the cohorts. Most of the fractures were asymptomatic and diagnosed only at screening. Vertebral fractures were most common in LTx patients. Vitamin D deficiency was common in all patient groups, and only 3% of patients with JIA and 25% of transplantation patients were considered to have adequate serum vitamin D levels. The total cumulative weight-adjusted dose of GC was not associated with BMD values in JIA or LTx patients. The combination of female gender and age over 15 years, parathyroid hormone concentration over 100 ng/L, and cumulative weight-adjusted methylprednisolone dose over 150 mg/kg during the three preceding years were found to be important predictors for low lumbar spine BMD in RTx patients. Based on the high prevalence of osteoporosis in the study cohorts more efforts should be put to prevention and early diagnosis of osteoporosis in these pediatric patients.
Resumo:
The output of a laser is a high frequency propagating electromagnetic field with superior coherence and brightness compared to that emitted by thermal sources. A multitude of different types of lasers exist, which also translates into large differences in the properties of their output. Moreover, the characteristics of the electromagnetic field emitted by a laser can be influenced from the outside, e.g., by injecting an external optical field or by optical feedback. In the case of free-running solitary class-B lasers, such as semiconductor and Nd:YVO4 solid-state lasers, the phase space is two-dimensional, the dynamical variables being the population inversion and the amplitude of the electromagnetic field. The two-dimensional structure of the phase space means that no complex dynamics can be found. If a class-B laser is perturbed from its steady state, then the steady state is restored after a short transient. However, as discussed in part (i) of this Thesis, the static properties of class-B lasers, as well as their artificially or noise induced dynamics around the steady state, can be experimentally studied in order to gain insight on laser behaviour, and to determine model parameters that are not known ab initio. In this Thesis particular attention is given to the linewidth enhancement factor, which describes the coupling between the gain and the refractive index in the active material. A highly desirable attribute of an oscillator is stability, both in frequency and amplitude. Nowadays, however, instabilities in coupled lasers have become an active area of research motivated not only by the interesting complex nonlinear dynamics but also by potential applications. In part (ii) of this Thesis the complex dynamics of unidirectionally coupled, i.e., optically injected, class-B lasers is investigated. An injected optical field increases the dimensionality of the phase space to three by turning the phase of the electromagnetic field into an important variable. This has a radical effect on laser behaviour, since very complex dynamics, including chaos, can be found in a nonlinear system with three degrees of freedom. The output of the injected laser can be controlled in experiments by varying the injection rate and the frequency of the injected light. In this Thesis the dynamics of unidirectionally coupled semiconductor and Nd:YVO4 solid-state lasers is studied numerically and experimentally.