8 resultados para GUIDE-O (Information retrieval system)
em Helda - Digital Repository of University of Helsinki
Resumo:
Menneinä vuosikymmeninä maatalouden työt ovat ensin koneellistuneet voimakkaasti ja sittemmin mukaan on tullut automaatio. Nykyään koneiden kokoa suurentamalla ei enää saada tuottavuutta nostettua merkittävästi, vaan työn tehostaminen täytyy tehdä olemassa olevien resurssien käyttöä tehostamalla. Tässä työssä tarkastelun kohteena on ajosilppuriketju nurmisäilörehun korjuussa. Säilörehun korjuun intensiivisyys ja koneyksiköiden runsas määrä ovat työnjohdon kannalta vaativa yhdistelmä. Työn tavoitteena oli selvittää vaatimuksia maatalouden urakoinnin tueksi kehitettävälle tiedonhallintajärjestelmälle. Tutkimusta varten haastateltiin yhteensä 12 urakoitsijaa tai yhteistyötä tekevää viljelijää. Tutkimuksen perusteella urakoitsijoilla on tarvetta tietojärjestelmille.Luonnollisesti urakoinnin laajuus ja järjestelyt vaikuttavat asiaan. Tutkimuksen perusteella keskeisimpiä vaatimuksia tiedonhallinnalle ovat: • mahdollisimman laaja, yksityiskohtainen ja automaattinen tiedon keruu tehtävästä työstä • karttapohjaisuus, kuljettajien opastus kohteisiin • asiakasrekisteri, työn tilaus sähköisesti • tarjouspyyntöpohjat, hintalaskurit • luotettavuus, tiedon säilyvyys • sovellettavuus monenlaisiin töihin • yhteensopivuus muiden järjestelmien kanssa Kehitettävän järjestelmän tulisi siis tutkimuksen perusteella sisältää seuraavia osia: helppokäyttöinen suunnittelu/asiakasrekisterityökalu, toimintoja koneiden seurantaan, opastukseen ja johtamiseen, työnaikainen tiedonkeruu sekä kerätyn tiedon käsittelytoimintoja. Kaikki käyttäjät eivät kuitenkaan tarvitse kaikkia toimintoja, joten urakoitsijan on voitava valita tarvitsemansa osat ja mahdollisesti lisätä toimintoja myöhemmin. Tiukoissa taloudellisissa ja ajallisissa raameissa toimivat urakoitsijat ovat vaativia asiakkaita, joiden käyttämän tekniikan tulee olla toimivaa ja luotettavaa. Toisaalta inhimillisiä virheitä sattuu kokeneillekin, joten hyvällä tietojärjestelmällä työstä tulee helpompaa ja tehokkaampaa.
Resumo:
Information retrieval of concise and consistent text passages is called passage retrieval. Passages can be used in an information retrieval system to improve its user interface and performance. In this thesis passage retrieval is compared to other forms of information retrieval. Implementation of passage retrieval as a feature of an information retrieval system is discussed. Various existing passage retrieval methods, their implementation and their efficiency are compared. I evaluated two different implementations of passage retrieval: direct passage retrieval and combined passage retrieval. In comparison combined passage retrieval turned out to be more efficient.
Resumo:
The usual task in music information retrieval (MIR) is to find occurrences of a monophonic query pattern within a music database, which can contain both monophonic and polyphonic content. The so-called query-by-humming systems are a famous instance of content-based MIR. In such a system, the user's hummed query is converted into symbolic form to perform search operations in a similarly encoded database. The symbolic representation (e.g., textual, MIDI or vector data) is typically a quantized and simplified version of the sampled audio data, yielding to faster search algorithms and space requirements that can be met in real-life situations. In this thesis, we investigate geometric approaches to MIR. We first study some musicological properties often needed in MIR algorithms, and then give a literature review on traditional (e.g., string-matching-based) MIR algorithms and novel techniques based on geometry. We also introduce some concepts from digital image processing, namely the mathematical morphology, which we will use to develop and implement four algorithms for geometric music retrieval. The symbolic representation in the case of our algorithms is a binary 2-D image. We use various morphological pre- and post-processing operations on the query and the database images to perform template matching / pattern recognition for the images. The algorithms are basically extensions to classic image correlation and hit-or-miss transformation techniques used widely in template matching applications. They aim to be a future extension to the retrieval engine of C-BRAHMS, which is a research project of the Department of Computer Science at University of Helsinki.
Resumo:
DEVELOPING A TEXTILE ONTOLOGY FOR THE SEMANTIC WEB AND CONNECTING IT TO MUSEUM CATALOGING DATA The goal of the Semantic Web is to share concept-based information in a versatile way on the Internet. This is achievable using formal data structures called ontologies. The goal of this re-search is to increase the usability of museum cataloging data in information retrieval. The work is interdisciplinary, involving craft science, terminology science, computer science, and museology. In the first part of the dissertation an ontology of concepts of textiles, garments, and accessories is developed for museum cataloging work. The ontology work was done with the help of thesauri, vocabularies, research reports, and standards. The basis of the ontology development was the Museoalan asiasanasto MASA, a thesaurus for museum cataloging work which has been enriched by other vocabularies. Concepts and terms concerning the research object, as well as the material names of textiles, costumes, and accessories, were focused on. The research method was terminological concept analysis complemented by an ontological view of the Semantic Web. The concept structure was based on the hierarchical generic relation. Attention was also paid to other relations between terms and concepts, and between concepts themselves. Altogether 977 concept classes were created. Issues including how to choose and name concepts for the ontology hierarchy and how deep and broad the hierarchy could be are discussed from the viewpoint of the ontology developer and museum cataloger. The second part of the dissertation analyzes why some of the cataloged terms did not match with the developed textile ontology. This problem is significant because it prevents automatic ontological content integration of the cataloged data on the Semantic Web. The research datasets, i.e. the cataloged museum data on textile collections, came from three museums: Espoo City Museum, Lahti City Museum and The National Museum of Finland. The data included 1803 textile, costume, and accessory objects. Unmatched object and textile material names were analyzed. In the case of the object names six categories (475 cases), and of the material names eight categories (423 cases), were found where automatic annotation was not possible. The most common explanation was that the cataloged field was filled with a long sentence comprised of many terms. Sometimes in the compound term, the object name and material, or the name and the way of usage, were combined. As well, numeric values in the material name cataloging field prevented annotation and so did the absence of a corresponding concept in the ontology. Ready-made drop-down lists of materials used in one cataloging system facilitated the annotation. In the case of naming objects and materials, one should use terms in basic form without attributes. The developed textile ontology has been applied in two cultural portals, MuseumFinland and Culturesampo, where one can search for and browse information based on cataloged data using integrated ontologies in an interoperable way. The textile ontology is also part of the national FinnONTO ontology infrastructure. Keywords: annotation, concept, concept analysis, cataloging, museum collection, ontology, Semantic Web, textile collection, textile material
Resumo:
Topic detection and tracking (TDT) is an area of information retrieval research the focus of which revolves around news events. The problems TDT deals with relate to segmenting news text into cohesive stories, detecting something new, previously unreported, tracking the development of a previously reported event, and grouping together news that discuss the same event. The performance of the traditional information retrieval techniques based on full-text similarity has remained inadequate for online production systems. It has been difficult to make the distinction between same and similar events. In this work, we explore ways of representing and comparing news documents in order to detect new events and track their development. First, however, we put forward a conceptual analysis of the notions of topic and event. The purpose is to clarify the terminology and align it with the process of news-making and the tradition of story-telling. Second, we present a framework for document similarity that is based on semantic classes, i.e., groups of words with similar meaning. We adopt people, organizations, and locations as semantic classes in addition to general terms. As each semantic class can be assigned its own similarity measure, document similarity can make use of ontologies, e.g., geographical taxonomies. The documents are compared class-wise, and the outcome is a weighted combination of class-wise similarities. Third, we incorporate temporal information into document similarity. We formalize the natural language temporal expressions occurring in the text, and use them to anchor the rest of the terms onto the time-line. Upon comparing documents for event-based similarity, we look not only at matching terms, but also how near their anchors are on the time-line. Fourth, we experiment with an adaptive variant of the semantic class similarity system. The news reflect changes in the real world, and in order to keep up, the system has to change its behavior based on the contents of the news stream. We put forward two strategies for rebuilding the topic representations and report experiment results. We run experiments with three annotated TDT corpora. The use of semantic classes increased the effectiveness of topic tracking by 10-30\% depending on the experimental setup. The gain in spotting new events remained lower, around 3-4\%. The anchoring the text to a time-line based on the temporal expressions gave a further 10\% increase the effectiveness of topic tracking. The gains in detecting new events, again, remained smaller. The adaptive systems did not improve the tracking results.
Resumo:
Current smartphones have a storage capacity of several gigabytes. More and more information is stored on mobile devices. To meet the challenge of information organization, we turn to desktop search. Users often possess multiple devices, and synchronize (subsets of) information between them. This makes file synchronization more important. This thesis presents Dessy, a desktop search and synchronization framework for mobile devices. Dessy uses desktop search techniques, such as indexing, query and index term stemming, and search relevance ranking. Dessy finds files by their content, metadata, and context information. For example, PDF files may be found by their author, subject, title, or text. EXIF data of JPEG files may be used in finding them. User–defined tags can be added to files to organize and retrieve them later. Retrieved files are ranked according to their relevance to the search query. The Dessy prototype uses the BM25 ranking function, used widely in information retrieval. Dessy provides an interface for locating files for both users and applications. Dessy is closely integrated with the Syxaw file synchronizer, which provides efficient file and metadata synchronization, optimizing network usage. Dessy supports synchronization of search results, individual files, and directory trees. It allows finding and synchronizing files that reside on remote computers, or the Internet. Dessy is designed to solve the problem of efficient mobile desktop search and synchronization, also supporting remote and Internet search. Remote searches may be carried out offline using a downloaded index, or while connected to the remote machine on a weak network. To secure user data, transmissions between the Dessy client and server are encrypted using symmetric encryption. Symmetric encryption keys are exchanged with RSA key exchange. Dessy emphasizes extensibility. Also the cryptography can be extended. Users may tag their files with context tags and control custom file metadata. Adding new indexed file types, metadata fields, ranking methods, and index types is easy. Finding files is done with virtual directories, which are views into the user’s files, browseable by regular file managers. On mobile devices, the Dessy GUI provides easy access to the search and synchronization system. This thesis includes results of Dessy synchronization and search experiments, including power usage measurements. Finally, Dessy has been designed with mobility and device constraints in mind. It requires only MIDP 2.0 Mobile Java with FileConnection support, and Java 1.5 on desktop machines.
Resumo:
The work is based on the assumption that words with similar syntactic usage have similar meaning, which was proposed by Zellig S. Harris (1954,1968). We study his assumption from two aspects: Firstly, different meanings (word senses) of a word should manifest themselves in different usages (contexts), and secondly, similar usages (contexts) should lead to similar meanings (word senses). If we start with the different meanings of a word, we should be able to find distinct contexts for the meanings in text corpora. We separate the meanings by grouping and labeling contexts in an unsupervised or weakly supervised manner (Publication 1, 2 and 3). We are confronted with the question of how best to represent contexts in order to induce effective classifiers of contexts, because differences in context are the only means we have to separate word senses. If we start with words in similar contexts, we should be able to discover similarities in meaning. We can do this monolingually or multilingually. In the monolingual material, we find synonyms and other related words in an unsupervised way (Publication 4). In the multilingual material, we ?nd translations by supervised learning of transliterations (Publication 5). In both the monolingual and multilingual case, we first discover words with similar contexts, i.e., synonym or translation lists. In the monolingual case we also aim at finding structure in the lists by discovering groups of similar words, e.g., synonym sets. In this introduction to the publications of the thesis, we consider the larger background issues of how meaning arises, how it is quantized into word senses, and how it is modeled. We also consider how to define, collect and represent contexts. We discuss how to evaluate the trained context classi?ers and discovered word sense classifications, and ?nally we present the word sense discovery and disambiguation methods of the publications. This work supports Harris' hypothesis by implementing three new methods modeled on his hypothesis. The methods have practical consequences for creating thesauruses and translation dictionaries, e.g., for information retrieval and machine translation purposes. Keywords: Word senses, Context, Evaluation, Word sense disambiguation, Word sense discovery.