4 resultados para Framinghan risk score
em Helda - Digital Repository of University of Helsinki
Resumo:
Type 2 diabetes is an increasing, serious, and costly public health problem. The increase in the prevalence of the disease can mainly be attributed to changing lifestyles leading to physical inactivity, overweight, and obesity. These lifestyle-related risk factors offer also a possibility for preventive interventions. Until recently, proper evidence regarding the prevention of type 2 diabetes has been virtually missing. To be cost-effective, intensive interventions to prevent type 2 diabetes should be directed to people at an increased risk of the disease. The aim of this series of studies was to investigate whether type 2 diabetes can be prevented by lifestyle intervention in high-risk individuals, and to develop a practical method to identify individuals who are at high risk of type 2 diabetes and would benefit from such an intervention. To study the effect of lifestyle intervention on diabetes risk, we recruited 522 volunteer, middle-aged (aged 40 - 64 at baseline), overweight (body mass index > 25 kg/m2) men (n = 172) and women (n = 350) with impaired glucose tolerance to the Diabetes Prevention Study (DPS). The participants were randomly allocated either to the intensive lifestyle intervention group or the control group. The control group received general dietary and exercise advice at baseline, and had annual physician's examination. The participants in the intervention group received, in addition, individualised dietary counselling by a nutritionist. They were also offered circuit-type resistance training sessions and were advised to increase overall physical activity. The intervention goals were to reduce body weight (5% or more reduction from baseline weight), limit dietary fat (< 30% of total energy consumed) and saturated fat (< 10% of total energy consumed), and to increase dietary fibre intake (15 g / 1000 kcal or more) and physical activity (≥ 30 minutes/day). Diabetes status was assessed annually by a repeated 75 g oral glucose tolerance testing. First analysis on end-points was completed after a mean follow-up of 3.2 years, and the intervention phase was terminated after a mean duration of 3.9 years. After that, the study participants continued to visit the study clinics for the annual examinations, for a mean of 3 years. The intervention group showed significantly greater improvement in each intervention goal. After 1 and 3 years, mean weight reductions were 4.5 and 3.5 kg in the intervention group and 1.0 kg and 0.9 kg in the control group. Cardiovascular risk factors improved more in the intervention group. After a mean follow-up of 3.2 years, the risk of diabetes was reduced by 58% in the intervention group compared with the control group. The reduction in the incidence of diabetes was directly associated with achieved lifestyle goals. Furthermore, those who consumed moderate-fat, high-fibre diet achieved the largest weight reduction and, even after adjustment for weight reduction, the lowest diabetes risk during the intervention period. After discontinuation of the counselling, the differences in lifestyle variables between the groups still remained favourable for the intervention group. During the post-intervention follow-up period of 3 years, the risk of diabetes was still 36% lower among the former intervention group participants, compared with the former control group participants. To develop a simple screening tool to identify individuals who are at high risk of type 2 diabetes, follow-up data of two population-based cohorts of 35-64 year old men and women was used. The National FINRISK Study 1987 cohort (model development data) included 4435 subjects, with 182 new drug-treated cases of diabetes identified during ten years, and the FINRISK Study 1992 cohort (model validation data) included 4615 subjects, with 67 new cases of drug-treated diabetes during five years, ascertained using the Social Insurance Institution's Drug register. Baseline age, body mass index, waist circumference, history of antihypertensive drug treatment and high blood glucose, physical activity and daily consumption of fruits, berries or vegetables were selected into the risk score as categorical variables. In the 1987 cohort the optimal cut-off point of the risk score identified 78% of those who got diabetes during the follow-up (= sensitivity of the test) and 77% of those who remained free of diabetes (= specificity of the test). In the 1992 cohort the risk score performed equally well. The final Finnish Diabetes Risk Score (FINDRISC) form includes, in addition to the predictors of the model, a question about family history of diabetes and the age category of over 64 years. When applied to the DPS population, the baseline FINDRISC value was associated with diabetes risk among the control group participants only, indicating that the intensive lifestyle intervention given to the intervention group participants abolished the diabetes risk associated with baseline risk factors. In conclusion, the intensive lifestyle intervention produced long-term beneficial changes in diet, physical activity, body weight, and cardiovascular risk factors, and reduced diabetes risk. Furthermore, the effects of the intervention were sustained after the intervention was discontinued. The FINDRISC proved to be a simple, fast, inexpensive, non-invasive, and reliable tool to identify individuals at high risk of type 2 diabetes. The use of FINDRISC to identify high-risk subjects, followed by lifestyle intervention, provides a feasible scheme in preventing type 2 diabetes, which could be implemented in the primary health care system.
Resumo:
Objectives of this study were to determine secular trends of diabetes prevalence in China and develop simple risk assessment algorithms for screening individuals with high-risk for diabetes or with undiagnosed diabetes in Chinese and Indian adults. Two consecutive population based surveys in Chinese and a prospective study in Mauritian Indians were involved in this study. The Chinese surveys were conducted in randomly selected populations aged 20-74 years in 2001-2002 (n=14 592) and 35-74 years in 2006 (n=4416). A two-step screening strategy using fasting capillary plasma glucose (FCG) as first-line screening test followed by standard 2-hour 75g oral glucose tolerance tests (OGTTs) was applied to 12 436 individuals in 2001, while OGTTs were administrated to all participants together with FCG in 2006 and to 2156 subjects in 2002. In Mauritius, two consecutive population based surveys were conducted in Mauritian Indians aged 20-65 years in 1987 and 1992; 3094 Indians (1141 men), who were not diagnosed as diabetes at baseline, were reexamined with OGTTs in 1992 and/or 1998. Diabetes and pre-diabetes was defined following 2006 World Health Organization/ International Diabetes Federation Criteria. Age-standardized, as well as age- and sex-specific, prevalence of diabetes and pre-diabetes in adult Chinese was significantly increased from 12.2% and 15.4% in 2001 to 16.0% and 21.2% in 2006, respectively. A simple Chinese diabetes risk score was developed based on the data of Chinese survey 2001-2002 and validated in the population of survey 2006. The risk scores based on β coefficients derived from the final Logistic regression model ranged from 3 – 32. When the score was applied to the population of survey 2006, the area under operating characteristic curve (AUC) of the score for screening undiagnosed diabetes was 0.67 (95% CI, 0.65-0.70), which was lower than the AUC of FCG (0.76 [0.74-0.79]), but similar to that of HbA1c (0.68 [0.65-0.71]). At a cut-off point of 14, the sensitivity and specificity of the risk score in screening undiagnosed diabetes was 0.84 (0.81-0.88) and 0.40 (0.38-0.41). In Mauritian Indian, body mass index (BMI), waist girth, family history of diabetes (FH), and glucose was confirmed to be independent risk predictors for developing diabetes. Predicted probabilities for developing diabetes derived from a simple Cox regression model fitted with sex, FH, BMI and waist girth ranged from 0.05 to 0.64 in men and 0.03 to 0.49 in women. To predict the onset of diabetes, the AUC of the predicted probabilities was 0.62 (95% CI, 0.56-0.68) in men and 0.64(0.59-0.69) in women. At a cut-off point of 0.12, the sensitivity and specificity was 0.72(0.71-0.74) and 0.47(0.45-0.49) in men; and 0.77(0.75-0.78) and 0.50(0.48-0.52) in women, respectively. In conclusion, there was a rapid increase in prevalence of diabetes in Chinese adults from 2001 to 2006. The simple risk assessment algorithms based on age, obesity and family history of diabetes showed a moderate discrimination of diabetes from non-diabetes, which may be used as first line screening tool for diabetes and pre-diabetes, and for health promotion purpose in Chinese and Indians.
Resumo:
Glaucoma, optic neuropathy with excavation in the optic nerve head and corresponding visual field defect, is one of the leading causes for blindness worldwide. However, visual disability can often be avoided or delayed if the disease is diagnosed at an early stage. Therefore, recognising the risk factors for development and progression of glaucoma may prevent further damage. The purpose of the present study was to evaluate factors associated with visual disability caused by glaucoma and the genetic features of two risk factors, exfoliation syndrome (ES) and a positive family history of glaucoma. The present study material consisted of three study groups 1) deceased glaucoma patients from the Ekenäs practice 2) glaucoma families from the Ekenäs region and 3) population based families with and without exfoliation syndrome from Kökar Island. For the retrospective study, 106 patients with open angle glaucoma (OAG) were identified. At the last visit, 17 patients were visually impaired. Blindness induced by glaucoma was found in one or both eyes in 16 patients and in both eyes in six patients. The cumulative incidence of glaucoma caused blindness for one eye was 6% at 5 years, 9% at 10 years, and 15% at 15 years from initialising the treatment. The factors associated with blindness caused by glaucoma were an advanced stage of glaucoma at diagnosis, fluctuation in intraocular pressure during treatment, the presence of exfoliation syndrome, and poor patient compliance. A cross-sectional population based study performed in 1960-1962 on Kökar Island and the same population was followed until 2002. In total 965 subjects (530 over 50 years) have been examined at least once. The prevalence of exfoliation syndrome (ES) was 18% among subjects older than 50 years. Seventy-five of all 78 ES-positives belonged to the same extended pedigree. According to the segregation and family analysis, exfoliation syndrome seemed to be inherited as an autosomal dominant trait with reduced penetrance. The penetrance was more reduced for males, but the risk for glaucoma was higher in males than in females. To find the gene or genes associated with exfoliation syndrome, a genome wide scan was performed for 64 members (28 ES affected and 36 controls) of the Kökar pedigree. A promising result was found: the highest two-point LOD score of 3.45 (θ=0.04) in chromosome18q12.1-21.33. The presence of mutations in glaucoma genes TIGR/MYOC (myocilin) and OPTN (optineurin) was analysed in eight glaucoma families from the Ekenäs region. An inheritance pattern resembling autosomal dominant mode was detected in all these families. Primary open angle glaucoma or exfoliation glaucoma was found in 35% of 136 family members and 28% were suspected to have glaucoma. No mutations were detected in these families.
Resumo:
Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.