13 resultados para Fission track method
em Helda - Digital Repository of University of Helsinki
Resumo:
We present a measurement of the top quark mass with t-tbar dilepton events produced in p-pbar collisions at the Fermilab Tevatron $\sqrt{s}$=1.96 TeV and collected by the CDF II detector. A sample of 328 events with a charged electron or muon and an isolated track, corresponding to an integrated luminosity of 2.9 fb$^{-1}$, are selected as t-tbar candidates. To account for the unconstrained event kinematics, we scan over the phase space of the azimuthal angles ($\phi_{\nu_1},\phi_{\nu_2}$) of neutrinos and reconstruct the top quark mass for each $\phi_{\nu_1},\phi_{\nu_2}$ pair by minimizing a $\chi^2$ function in the t-tbar dilepton hypothesis. We assign $\chi^2$-dependent weights to the solutions in order to build a preferred mass for each event. Preferred mass distributions (templates) are built from simulated t-tbar and background events, and parameterized in order to provide continuous probability density functions. A likelihood fit to the mass distribution in data as a weighted sum of signal and background probability density functions gives a top quark mass of $165.5^{+{3.4}}_{-{3.3}}$(stat.)$\pm 3.1$(syst.) GeV/$c^2$.
Resumo:
Department of Forest Resource Management in the University of Helsinki has in years 2004?2007 carried out so-called SIMO -project to develop a new generation planning system for forest management. Project parties are organisations doing most of Finnish forest planning in government, industry and private owned forests. Aim of this study was to find out the needs and requirements for new forest planning system and to clarify how parties see targets and processes in today's forest planning. Representatives responsible for forest planning in each organisation were interviewed one by one. According to study the stand-based system for managing and treating forests continues in the future. Because of variable data acquisition methods with different accuracy and sources, and development of single tree interpretation, more and more forest data is collected without field work. The benefits of using more specific forest data also calls for use of information units smaller than tree stand. In Finland the traditional way to arrange forest planning computation is divided in two elements. After updating the forest data to present situation every stand unit's growth is simulated with different alternative treatment schedule. After simulation, optimisation selects for every stand one treatment schedule so that the management program satisfies the owner's goals in the best possible way. This arrangement will be maintained in the future system. The parties' requirements to add multi-criteria problem solving, group decision support methods as well as heuristic and spatial optimisation into system make the programming work more challenging. Generally the new system is expected to be adjustable and transparent. Strict documentation and free source code helps to bring these expectations into effect. Variable growing models and treatment schedules with different source information, accuracy, methods and the speed of processing are supposed to work easily in system. Also possibilities to calibrate models regionally and to set local parameters changing in time are required. In future the forest planning system will be integrated in comprehensive data management systems together with geographic, economic and work supervision information. This requires a modular method of implementing the system and the use of a simple data transmission interface between modules and together with other systems. No major differences in parties' view of the systems requirements were noticed in this study. Rather the interviews completed the full picture from slightly different angles. In organisation the forest management is considered quite inflexible and it only draws the strategic lines. It does not yet have a role in operative activity, although the need and benefits of team level forest planning are admitted. Demands and opportunities of variable forest data, new planning goals and development of information technology are known. Party organisations want to keep on track with development. One example is the engagement in extensive SIMO-project which connects the whole field of forest planning in Finland.
Resumo:
The safety of food has become an increasingly interesting issue to consumers and the media. It has also become a source of concern, as the amount of information on the risks related to food safety continues to expand. Today, risk and safety are permanent elements within the concept of food quality. Safety, in particular, is the attribute that consumers find very difficult to assess. The literature in this study consists of three main themes: traceability; consumer behaviour related to both quality and safety issues and perception of risk; and valuation methods. The empirical scope of the study was restricted to beef, because the beef labelling system enables reliable tracing of the origin of beef, as well as attributes related to safety, environmental friendliness and animal welfare. The purpose of this study was to examine what kind of information flows are required to ensure quality and safety in the food chain for beef, and who should produce that information. Studying the willingness to pay of consumers makes it possible to determine whether the consumers consider the quantity of information available on the safety and quality of beef sufficient. One of the main findings of this study was that the majority of Finnish consumers (73%) regard increased quality information as beneficial. These benefits were assessed using the contingent valuation method. The results showed that those who were willing to pay for increased information on the quality and safety of beef would accept an average price increase of 24% per kilogram. The results showed that certain risk factors impact consumer willingness to pay. If the respondents considered genetic modification of food or foodborne zoonotic diseases as harmful or extremely harmful risk factors in food, they were more likely to be willing to pay for quality information. The results produced by the models thus confirmed the premise that certain food-related risks affect willingness to pay for beef quality information. The results also showed that safety-related quality cues are significant to the consumers. In the first place, the consumers would like to receive information on the control of zoonotic diseases that are contagious to humans. Similarly, other process-control related information ranked high among the top responses. Information on any potential genetic modification was also considered important, even though genetic modification was not regarded as a high risk factor.
Resumo:
Precipitation-induced runoff and leaching from milled peat mining mires by peat types: a comparative method for estimating the loading of water bodies during peat production. This research project in environmental geology has arisen out of an observed need to be able to predict more accurately the loading of watercourses with detrimental organic substances and nutrients from already existing and planned peat production areas, since the authorities capacity for insisting on such predictions covering the whole duration of peat production in connection with evaluations of environmental impact is at present highly limited. National and international decisions regarding monitoring of the condition of watercourses and their improvement and restoration require more sophisticated evaluation methods in order to be able to forecast watercourse loading and its environmental impacts at the stage of land-use planning and preparations for peat production.The present project thus set out from the premise that it would be possible on the basis of existing mire and peat data properties to construct estimates for the typical loading from production mires over the whole duration of their exploitation. Finland has some 10 million hectares of peatland, accounting for almost a third of its total area. Macroclimatic conditions have varied in the course of the Holocene growth and development of this peatland, and with them the habitats of the peat-forming plants. Temperatures and moisture conditions have played a significant role in determining the dominant species of mire plants growing there at any particular time, the resulting mire types and the accumulation and deposition of plant remains to form the peat. The above climatic, environmental and mire development factors, together with ditching, have contributed, and continue to contribute, to the existence of peat horizons that differ in their physical and chemical properties, leading to differences in material transport between peatlands in a natural state and mires that have been ditched or prepared for forestry and peat production. Watercourse loading from the ditching of mires or their use for peat production can have detrimental effects on river and lake environments and their recreational use, especially where oxygen-consuming organic solids and soluble organic substances and nutrients are concerned. It has not previously been possible, however, to estimate in advance the watercourse loading likely to arise from ditching and peat production on the basis of the characteristics of the peat in a mire, although earlier observations have indicated that watercourse loading from peat production can vary greatly and it has been suggested that differences in peat properties may be of significance in this. Sprinkling is used here in combination with simulations of conditions in a milled peat production area to determine the influence of the physical and chemical properties of milled peats in production mires on surface runoff into the drainage ditches and the concentrations of material in the runoff water. Sprinkling and extraction experiments were carried out on 25 samples of milled Carex (C) and Sphagnum (S) peat of humification grades H 2.5 8.5 with moisture content in the range 23.4 89% on commencement of the first sprinkling, which was followed by a second sprinkling 24 hours later. The water retention capacity of the peat was best, and surface runoff lowest, with Sphagnum and Carex peat samples of humification grades H 2.5 6 in the moisture content class 56 75%. On account of the hydrophobicity of dry peat, runoff increased in a fairly regular manner with drying of the sample from 55% to 24 30%. Runoff from the samples with an original moisture content over 55% increased by 63% in the second round of sprinkling relative to the first, as they had practically reached saturation point on the first occasion, while those with an original moisture content below 55% retained their high runoff in the second round, due to continued hydrophobicity. The well-humified samples (H 6.5 8.5) with a moisture content over 80% showed a low water retention capacity and high runoff in both rounds of sprinkling. Loading of the runoff water with suspended solids, total phosphorus and total nitrogen, and also the chemical oxygen demand (CODMn O2), varied greatly in the sprinkling experiment, depending on the peat type and degree of humification, but concentrations of the same substances in the two sprinklings were closely or moderately closely correlated and these correlations were significant. The concentrations of suspended solids in the runoff water observed in the simulations of a peat production area and the direct surface runoff from it into the drainage ditch system in response to rain (sprinkling intensity 1.27 mm/min) varied c. 60-fold between the degrees of humification in the case of the Carex peats and c. 150-fold for the Sphagnum peats, while chemical oxygen demand varied c. 30-fold and c. 50-fold, respectively, total phosphorus c. 60-fold and c. 66-fold, total nitrogen c. 65-fold and c. 195-fold and ammonium nitrogen c. 90-fold and c. 30-fold. The increases in concentrations in the runoff water were very closely correlated with increases in humification of the peat. The correlations of the concentrations measured in extraction experiments (48 h) with peat type and degree of humification corresponded to those observed in the sprinkler experiments. The resulting figures for the surface runoff from a peat production area into the drainage ditches simulated by means of sprinkling and material concentrations in the runoff water were combined with statistics on the mean extent of daily rainfall (0 67 mm) during the frost-free period of the year (May October) over an observation period of 30 years to yield typical annual loading figures (kg/ha) for suspended solids (SS), chemical oxygen demand of organic matter (CODmn O2), total phosphorus (tot. P) and total nitrogen (tot. N) entering the ditches with respect to milled Carex (C) and Sphagnum (S) peats of humification grades H 2.5 8.5. In order to calculate the loading of drainage ditches from a milled peat production mire with the aid of these annual comparative values (in kg/ha), information is required on the properties of the intended production mire and its peat. Once data are available on the area of the mire, its peat depth, peat types and their degrees of humification, dry matter content, calorific value and corresponding energy content, it is possible to produce mutually comparable estimates for individual mires with respect to the annual loading of the drainage ditch system and the surrounding watercourse for the whole service life of the production area, the duration of this service life, determinations of energy content and the amount of loading per unit of energy generated (kg/MWh). In the 8 mires in the Köyhäjoki basin, Central Ostrobothnia, taken as an example, the loading of suspended solids (SS) in the drainage ditch networks calculated on the basis of the typical values obtained here and existing mire and peat data and expressed per unit of energy generated varied between the mires and horizons in the range 0.9 16.5 kg/MWh. One of the aims of this work was to develop means of making better use of existing mire and peat data and the results of corings and other field investigations. In this respect combination of the typical loading values (kg/ha) obtained here for S, SC, CS and C peats and the various degrees of humification (H 2.5 8.5) with the above mire and peat data by means of a computer program for the acquisition and handling of such data would enable all the information currently available and that deposited in the system in the future to be used for defining watercourse loading estimates for mires and comparing them with the corresponding estimates of energy content. The intention behind this work has been to respond to the challenge facing the energy generation industry to find larger peat production areas that exert less loading on the environment and to that facing the environmental authorities to improve the means available for estimating watercourse loading from peat production and its environmental impacts in advance. The results conform well to the initial hypothesis and to the goals laid down for the research and should enable watercourse loading from existing and planned peat production to be evaluated better in the future and the resulting impacts to be taken into account when planning land use and energy generation. The advance loading information available in this way would be of value in the selection of individual peat production areas, the planning of their exploitation, the introduction of water protection measures and the planning of loading inspections, in order to achieve controlled peat production that pays due attention to environmental considerations.