9 resultados para Fish - Bacterial disease
em Helda - Digital Repository of University of Helsinki
Resumo:
Streptococcus pyogenes (group A streptococcus) is an important human pathogen, causing a wide array of infections ranging in severity. The majority of S. pyogenes infections are mild upper respiratory tract or skin infections. Severe, invasive infections, such as bacteraemia, are relatively rare, but constitute a major global burden with a high mortality. Certain streptococcal types are associated with a more severe disease and higher mortality. Bacterial, non-necrotizing cellulitis and erysipelas are localised infections of the skin, and although they are usually not life-threatening, they have a tendency to recur and therefore cause substantial morbidity. Despite several efforts aimed at developing an effective and safe vaccine against S. pyogenes infections, no vaccine is yet available. In this study, the epidemiology of invasive S. pyogenes infections in Finland was described over a decade of national, population-based surveillance. Recent trends in incidence, outcome and bacterial types were investigated. The beta-haemolytic streptococci causing cellulitis and erysipelas infections in Finland were studied in a case-control study. Bacterial isolates were characterised using both conventional and molecular typing methods, such as the emm typing, which is the most widely used typing method for beta-haemolytic streptococci. The incidence of invasive S. pyogenes disease has had an increasing trend during the past ten years in Finland, especially from 2006 onwards. Age- and sex-specific differences in the incidence rate were identified, with men having a higher incidence than women, especially among persons aged 45-64 years. In contrast, more infections occurred in women aged 25-34 years than men. Seasonal patterns with occasional peaks during the midsummer and midwinter were observed. Differences in the predisposing factors and underlying conditions of patients may contribute to these distinctions. Case fatality associated with invasive S. pyogenes infections peaked in 2005 (12%) but remained at a reasonably low level (8% overall during 2004-2007) compared to that of other developed countries (mostly exceeding 10%). Changes in the prevalent emm types were associated with the observed increases in incidence and case fatality. In the case-control study, acute bacterial non-necrotizing cellulitis was caused predominantly by Streptococcus dysgalactiae subsp. equisimilis, instead of S. pyogenes. The recurrent nature of cellulitis became evident. This study adds to our understanding of S. pyogenes infections in Finland and provides a basis for comparison to other countries and future trends. emm type surveillance and outcome analyses remain important for detecting such changes in type distribution that might lead to increases in incidence and case fatality. Bacterial characterisation serves as a basis for disease pathogenesis studies and vaccine development.
Resumo:
Fish farming introduces nutrients, microbes and a wide variety of chemicals such as heavy metals, antifoulants and antibiotics to the surrounding environment. Introduction of antibiotics has been linked with the increased incidence of antibiotic resistant pathogenic bacteria in the farm vicinities. In this thesis molecular methods such as quantitative PCR and DNA sequencing were applied to analyze bacterial communities in sediments from fish farms and pristine locations. Altogether four farms and four pristine sites were sampled in the Baltic Sea. Two farm and two pristine locations were sampled over a surveillance period of four years. Furthermore, a new methodology was developed as a part of the study that permits amplifying single microbial genomes and capturing them according to any genetic traits, including antibiotic resistance genes. The study revealed that several resistance genes for tetracycline were found at the sediment underneath the aquaculture farms. The copy number of these genes remained elevated even at a farm that had not used any antibiotics since year 2000, six years before this study started. Similarly, an increase in the amount of mercury resistance gene merA was observed at the aquaculture sediment. The persistence of the resistance genes in absence of any selection pressure from antibiotics or heavy metals suggests that the genes may be introduced to the sediment by the farming process. This is also supported by the diversity pattern of the merA gene between farm and pristine sediments. The bacterial community-level changes in response to fish farming were very complex and no single phylogenetic groups were found that would be typical to fish farm sediments. However, the community structures had some correlation with the exposure to fish farming. Our studies suggest that the established approaches to deal with antibiotic resistance at the aquaculture, such as antibiotic cycling, are fundamentally flawed because they cannot prevent the introduction of the resistance genes and resistant bacteria to the farm area by the farming process. Further studies are required to study the entire fish farming process to identify the sources of the resistance genes and the resistant bacteria. The results also suggest that in order to prevent major microbiological changes in the surrounding aquatic environment, the farms should not be founded in shallow water where currents do not transport sedimenting matter from the farms. Finally, the technique to amplify and select microbial genomes will potentially have a considerable impact in microbial ecology and genomics.
Resumo:
Parkinson’s disease (PD) is the second most common neurodegenerative disease among the elderly. Its etiology is unknown and no disease-modifying drugs are available. Thus, more information concerning its pathogenesis is needed. Among other genes, mutated PTEN-induced kinase 1 (PINK1) has been linked to early-onset and sporadic PD, but its mode of action is poorly understood. Most animal models of PD are based on the use of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP is metabolized to MPP+ by monoamine oxidase B (MAO B) and causes cell death of dopaminergic neurons in the substantia nigra in mammals. Zebrafish has been a widely used model organism in developmental biology, but is now emerging as a model for human diseases due to its ideal combination of properties. Zebrafish are inexpensive and easy to maintain, develop rapidly, breed in large quantities producing transparent embryos, and are readily manipulated by various methods, particularly genetic ones. In addition, zebrafish are vertebrate animals and results derived from zebrafish may be more applicable to mammals than results from invertebrate genetic models such as Drosophila melanogaster and Caenorhabditis elegans. However, the similarity cannot be taken for granted. The aim of this study was to establish and test a PD model using larval zebrafish. The developing monoaminergic neuronal systems of larval zebrafish were investigated. We identified and classified 17 catecholaminergic and 9 serotonergic neuron populations in the zebrafish brain. A 3-dimensional atlas was created to facilitate future research. Only one gene encoding MAO was found in the zebrafish genome. Zebrafish MAO showed MAO A-type substrate specificity, but non-A-non-B inhibitor specificity. Distribution of MAO in larval and adult zebrafish brains was both diffuse and distinctly cellular. Inhibition of MAO during larval development led to markedly elevated 5-hydroxytryptamine (serotonin, 5-HT) levels, which decreased the locomotion of the fish. MPTP exposure caused a transient loss of cells in specific aminergic cell populations and decreased locomotion. MPTP-induced changes could be rescued by the MAO B inhibitor deprenyl, suggesting a role for MAO in MPTP toxicity. MPP+ affected only one catecholaminergic cell population; thus, the action of MPP+ was more selective than that of MPTP. The zebrafish PINK1 gene was cloned in zebrafish, and morpholino oligonucleotides were used to suppress its expression in larval zebrafish. The functional domains and expression pattern of zebrafish PINK1 resembled those of other vertebrates, suggesting that zebrafish is a feasible model for studying PINK1. Translation inhibition resulted in cell loss of the same catecholaminergic cell populations as MPTP and MPP+. Inactivation of PINK1 sensitized larval zebrafish to subefficacious doses of MPTP, causing a decrease in locomotion and cell loss in one dopaminergic cell population. Zebrafish appears to be a feasible model for studying PD, since its aminergic systems, mode of action of MPTP, and functions of PINK1 resemble those of mammalians. However, the functions of zebrafish MAO differ from the two forms of MAO found in mammals. Future studies using zebrafish PD models should utilize the advantages specific to zebrafish, such as the ability to execute large-scale genetic or drug screens.
Resumo:
The genus Actinomyces consists of a heterogeneous group of gram-positive, mainly facultatively anaerobic or microaerobic rods showing various degrees of branching. In the oral cavity, streptococci and Actinomyces form a fundamental component of the indigenous microbiota, being among initial colonizers in polymicrobial biofilms. The significance of the genus Actinomyces is based on the capability of species to adhere to surfaces such as on teeth and to co-aggregate with other bacteria. Identification of Actinomyces species has mainly been based on only a few biochemical characteristics, such as pigmentation and catalase production, or on the use of a single commercial kit. The limited identification of oral Actinomyces isolates to species level has hampered knowledge of their role both in health and disease. In recent years, Actinomyces and related organisms have attracted the attention of clinical microbiologists because of a growing awareness of their presence in clinical specimens and their association with disease. This series of studies aimed to amplify the identification methods for Actinomyces species. With the newly developed identification scheme, the age-related occurrence of Actinomyces in healthy mouths of infants and their distribution in failed dental implants was investigated. Adhesion of Actinomyces species to titanium surfaces processed in various ways was studied in vitro. The results of phenotypic identification methods indicated a relatively low applicability of commercially available test kits for reliable identification within the genus Actinomyces. However, in the study of conventional phenotypic methods, it was possible to develop an identification scheme that resulted in accurate differentiation of Actinomyces and closely related species, using various different test methods. Genotypic methods based on 16S rRNA sequence analysis of Actinomyces proved to be a useful method for genus level identification and further clarified the species level identification with phenotypic methods. The results of the study of infants showed that the isolation frequency of salivary Actinomyces species increased according to age: thirty-one percent of the infants at 2 months but 97% at 2 years of age were positive for Actinomyces. A. odontolyticus was the most prominent Actinomyces colonizer during the study period followed in frequency by A. naeslundii and A. viscosus. In the study of explanted dental implants, Actinomyces was the most prevalent bacterial genus, colonizing 94% of the fixtures. Also in the implants A. odontolyticus was revealed as the most common Actinomyces species. It was present in 84% of Actinomyces -positive fixtures followed in frequency by A. naeslundii, A. viscosus and A. israelii. In an in vitro study of titanium surfaces, different Actinomyces species showed variation regarding their adhesion to titanium. Surface roughness as well as albumin coating of titanium had significant effects on adhesion. The use of improved phenotypic and molecular diagnostic methods increased the accuracy of the identification of the Actinomyces to species level. This facilitated an investigation of their occurrence and distribution in oral specimens in both health and disease.
Resumo:
Diseases caused by the Lancefield group A streptococcus, Streptococcus pyogenes, are amongst the most challenging to clinicians and public health specialists alike. Although severe infections caused by S. pyogenes are relatively uncommon, affecting around 3 per 100,000 of the population per annum in developed countries, the case fatality is high relative to many other infections. Despite a long scientific tradition of studying their occurrence and characteristics, many aspects of their epidemiology remain poorly understood, and potential control measures undefined. Epidemiological studies can play an important role in identifying host, pathogen and environmental factors associated with risk of disease, manifestation of particular syndromes or poor survival. This can be of value in targeting prevention activities, as well directing further basic research, potentially paving the way for the identification of novel therapeutic targets. The formation of a European network, Strep-EURO, provided an opportunity to explore epidemiological patterns across Europe. Funded by the Fifth Framework Programme of the European Commission s Directorate-General for Research (QLK2.CT.2002.01398), the Strep-EURO network was launched in September 2002. Twelve participants across eleven countries took part, led by the University of Lund in Sweden. Cases were defined as patients with S. pyogenes isolated from a normally sterile site, or non-sterile site in combination with clinical signs of streptococcal toxic shock syndrome (STSS). All participating countries undertook prospective enhanced surveillance between 1st January 2003 and 31st December 2004 to identify cases diagnosed during this period. A standardised surveillance dataset was defined, comprising demographic, clinical and risk factor information collected through a questionnaire. Isolates were collected by the national reference laboratories and characterised according to their M protein using conventional serological and emm gene typing. Descriptive statistics and multivariable analyses were undertaken to compare characteristics of cases between countries and identify factors associated with increased risk of death or development of STSS. Crude and age-adjusted rates of infection were calculated for each country where a catchment population could be defined. The project succeeded in establishing the first European surveillance network for severe S. pyogenes infections, with 5522 cases identified over the two years. Analysis of data gathered in the eleven countries yielded important new information on the epidemiology of severe S. pyogenes infections in Europe during the 2000s. Comprehensive epidemiological data on these infections were obtained for the first time from France, Greece and Romania. Incidence estimates identified a general north-south gradient, from high to low. Remarkably similar age-standardised rates were observed among the three Nordic participants, between 2.2 and 2.3 per 100,000 population. Rates in the UK were higher still, 2.9/100,000, elevated by an upsurge in drug injectors. Rates from these northern countries were reasonably close to those observed in the USA and Australia during this period. In contrast, rates of reports in the more central and southern countries (Czech Republic, Romania, Cyprus and Italy) were substantially lower, 0.3 to 1.5 per 100,000 population, a likely reflection of poorer uptake of microbiological diagnostic methods within these countries. Analysis of project data brought some new insights into risk factors for severe S. pyogenes infection, especially the importance of injecting drug users in the UK, with infections in this group fundamentally reshaping the epidemiology of these infections during this period. Several novel findings arose through this work, including the high degree of congruence in seasonal patterns between countries and the seasonal changes in case fatality rates. Elderly patients, those with compromised immune systems, those who developed STSS and those infected with an emm/M78, emm/M5, emm/M3 or emm/M1 were found to be most likely to die as a result of their infection, whereas those diagnosed with cellulitis, septic arthritis, puerperal sepsis or with non-focal infection were associated with low risk of death, as were infections occurring during October. Analysis of augmented data from the UK found use of NSAIDs to be significantly associated with development of STSS, adding further fuel to the debate surrounding the role of NSAIDs in the development of severe disease. As a largely community-acquired infection, occurring sporadically and diffusely throughout the population, opportunities for control of severe infections caused by S. pyogenes remain limited, primarily involving contact chemoprophylaxis where clusters arise. Analysis of UK Strep-EURO data were used to quantify the risk to household contacts of cases, forming the basis of national guidance on the management of infection. Vaccines currently under development could offer a more effective control programme in future. Surveillance of invasive infections caused by S. pyogenes is of considerable public health importance as a means of identifying long and short-term trends in incidence, allowing the need for, or impact of, public health measures to be evaluated. As a dynamic pathogen co-existing among a dynamic population, new opportunities for exploitation of its human host are likely to arise periodically, and as such continued monitoring remains essential.
Resumo:
My work describes two sectors of the human bacterial environment: 1. The sources of exposure to infectious non-tuberculous mycobacteria. 2. Bacteria in dust, reflecting the airborne bacterial exposure in environments protecting from or predisposing to allergic disorders. Non-tuberculous mycobacteria (NTM) transmit to humans and animals from the environment. Infection by NTM in Finland has increased during the past decade beyond that by Mycobacterium tuberculosis. Among the farm animals, porcine mycobacteriosis is the predominant NTM disease in Finland. Symptoms of mycobacteriosis are found in 0.34 % of slaughtered pigs. Soil and drinking water are suspected as sources for humans and bedding materials for pigs. To achieve quantitative data on the sources of human and porcine NTM exposure, methods for quantitation of environmental NTM are needed. We developed a quantitative real-time PCR method, utilizing primers targeted at the 16S rRNA gene of the genus of Mycobacterium. With this method, I found in Finnish sphagnum peat, sandy soils and mud high contents of mycobacterial DNA, 106 to 107 genome equivalents per gram. A similar result was obtained by a method based on the Mycobacterium-specific hybridization of 16S rRNA. Since rRNA is found mainly in live cells, this result shows that the DNA detected by qPCR mainly represented live mycobacteria. Next, I investigated the occurrence of environmental mycobacteria in the bedding materials obtained from 5 pig farms with high prevalence (>4 %) of mycobacteriosis. When I used for quantification the same qPCR methods as for the soils, I found that piggery samples contained non-mycobacterial DNA that was amplified in spite of several mismatches with the primers. I therefore improved the qPCR assay by designing Mycobacterium-specific detection probes. Using the probe qPCR assay, I found 105 to 107 genome equivalents of mycobacterial DNA in unused bedding materials and up to 1000 fold more in the bedding collected after use in the piggery. This result shows that there was a source of mycobacteria in the bedding materials purchased by the piggery and that mycobacteria increased in the bedding materials during use in the piggery. Allergic diseases have reached epidemic proportions in urbanized countries. At the same time, childhood in rural environment or simple living conditions appears to protect against allergic disorders. Exposure to immunoreactive microbial components in rural environments seems to prevent allergies. I searched for differences in the bacterial communities of two indoor dusts, an urban house dust shown to possess immunoreactivity of the TH2-type and a farm barn dust with TH1-activity. The immunoreactivities of the dusts were revealed by my collaborators, in vitro in human dendritic cells and in vivo in mouse. The dusts accumulated >10 years in the respiratory zone (>1.5 m above floor), thus reflecting the long-term content of airborne bacteria at the two sites. I investigated these dusts by cloning and sequencing of bacterial 16S rRNA genes from dust contained DNA. From the TH2-active urban house dust, I isolated 139 16S rRNA gene clones. The most prevalent genera among the clones were Corynebacterium (5 species, 34 clones), Streptococcus (8 species, 33 clones), Staphylococcus (5 species, 9 clones) and Finegoldia (1 species, 9 clones). Almost all of these species are known as colonizers of the human skin and oral cavity. Species of Corynebacterium and Streptococcus have been reported to contain anti-inflammatory lipoarabinomannans and immunmoreactive beta-glucans respectively. Streptococcus mitis, found in the urban house dust is known as an inducer of TH2 polarized immunity, characteristic of allergic disorders. I isolated 152 DNA clones from the TH1-active farm barn dust and found species quite different from those found from the urban house dust. Among others, I found DNA clones representing Bacillus licheniformis, Acinetobacter lwoffii and Lactobacillus each of which was recently reported to possess anti-allergy immunoreactivity. Moreover, the farm barn dust contained dramatically higher bacterial diversity than the urban house dust. Exposure to this dust thus stimulated the human dendritic cells by multiple microbial components. Such stimulation was reported to promote TH1 immunity. The biodiversity in dust may thus be connected to its immunoreactivity. Furthermore, the bacterial biomass in the farm barn dust consisted of live intact bacteria mainly. In the urban house dust only ~1 % of the biomass appeared as intact bacteria, as judged by microscoping. Fragmented microbes may possess bioactivity different from that of intact cells. This was recently shown for moulds. If this is also valid for bacteria, the different immunoreactivities of the two dusts may be explained by the intactness of dustborne bacteria. Based on these results, we offer three factors potentially contributing to the polarized immunoreactivities of the two dusts: (i) the species-composition, (ii) the biodiversity and (iii) the intactness of the dustborne bacterial biomass. The risk of childhood atopic diseases is 4-fold lower in the Russian compared with the Finnish Karelia. This difference across the country border is not explainable by different geo-climatic factors or genetic susceptibilities of the two populations. Instead, the explanation must be lifestyle-related. It has already been reported that the microbiological quality of drinking water differs on the two sides of the borders. In collaboration with allergists, I investigated dusts collected from homes in the Russian Karelia and in the Finnish Karelia. I found that bacterial 16S rRNA genes cloned from the Russian Karelian dusts (10 homes, 234 clones) predominantly represented Gram-positive taxa (the phyla Actinobacteria and Firmicutes, 67%). The Russian Karelian dusts contained nine-fold more of muramic acid (60 to 70 ng mg-1) than the Finnish Karelian dusts (3 to 11 ng mg-1). Among the DNA clones isolated from the Finnish side (n=231), Gram-negative taxa (40%) outnumbered the Gram-positives (34%). Out of the 465 DNA clones isolated from the Karelian dusts, 242 were assigned to cultured validly described bacterial species. In Russian Karelia, animal-associated species e.g. Staphylococcus and Macrococcus were numerous (27 clones, 14 unique species). This finding may connect to the difference in the prevalence of allergy, as childhood contacts with pets and farm animals have been connected with low allergy risk. Plant-associated bacteria and plant-borne 16S rRNA genes (chloroplast) were frequent among the DNA clones isolated from the Finnish Karelia, indicating components originating from plants. In conclusion, my work revealed three major differences between the bacterial communtites in the Russian and in the Finnish Karelian homes: (i) the high prevalence of Gram-positive bacteria on the Russian side and of Gram-negative bacteria on the Finnish side and (ii) the rich presence of animal-associated bacteria on the Russian side whereas (iii) plant-associated bacteria prevailed on the Finnish side. One or several of these factors may connect to the differences in the prevalence of allergy.
Resumo:
Plants are capable of recognizing phytopathogens through the perception of pathogen-derived molecules or plant cell-wall degradation products due to the activities of pathogen-secreted enzymes. Such elicitor recognition events trigger an array of inducible defense responses involving signal transduction networks and massive transcriptional re-programming. The outcome of a pathogen infection relies on the balance between different signaling pathways, which are integrated by regulatory proteins. This thesis characterized two key regulatory components: a damage control enzyme, chlorophyllase 1 (AtCHL1), and a transcription factor, WRKY70. Their roles in defense signaling were then investigated. The Erwinia-derived elicitors rapidly activated the expression of AtCLH1 and WRKY70 through different signaling pathways. The expression of the AtCHL1 gene was up-regulated by jasmonic acid (JA) but down-regulated by salicylic acid (SA), whereas WRKY70 was activated by SA and repressed by JA. In order to elucidate the functions of AtCLH1 and WRKY70 in plant defense, stable transgenic lines were produced where these genes were overexpressed or silenced. Additionally, independent knockout lines were also characterized. Bacterial and fungal pathogens were then used to assess the contribution of these genes to the Arabidopsis disease resistance. The transcriptional modulation of AtCLH1 by either the constitutive over-expression or RNAi silencing caused alterations in the chlorophyll-to-chlorophyllide ratio, supporting the claim that chlorophyllase 1 has a role in the chlorophyll degradation pathway. Silencing of this gene led to light-dependent over-accumulation of the reactive oxygen species (ROS) in response to infection by Erwinia carotovora subsp. carotovora SCC1. This was followed by an enhanced induction of SA-dependent defense genes and an increased resistance to this pathogen. Interestingly, little effect on the pathogen-induced SA accumulation at the early infection was observed, suggesting that action of ROS might potentiate SA signaling. In contrast, the pathogen-induced JA production was significantly reduced in the RNAi silenced plants. Moreover, JA signaling and resistance to Alternaria brassicicola were impaired. These observations provide support for the argument that the ROS generated in chloroplasts might have a negative impact on JA signaling. The over-expression of WRKY70 resulted in an enhanced resistance to E. carotovora subsp. carotovora SCC1, Pseudomonas syringae pv. tomato DC3000 and Erysiphe cichoracearum UCSC1, whilst an antisense suppression or an insertional inactivation of WRKY70 led to a compromised resistance to E. carotovora subsp. carotovora SCC1 and to E. cichoracearum UCSC1 but not to P. syringae pv. tomato DC3000. Gene expression analysis revealed that WRKY70 activated many known defense-related genes associated with the SAR response but suppressed a subset of the JA-responsive genes. In particular, I was able to show that both the basal and the induced expression of AtCLH1 was enhanced by the antisense silencing or the insertional inactivation of WRKY70, whereas a reduction in AtCLH1 expression was observed in the WRKY70 over-expressors following an MeJA application or an A. brassicicola infection. Moreover, the SA-induced suppression of AtCLH1 was relieved in wrky70 mutants. These results indicate that WRKY70 down-regulates AtCLH1. An epistasis analysis suggested that WRKY70 functions downstream of the NPR1 in an SA-dependent signaling pathway. When challenged with A. brassicicola, WRKY70 over-expressing plants exhibited a compromised disease resistance while wrky70 mutants had the opposite effect. These results confirmed the WRKY70-mediated inhibitory effects on JA signaling. Furthermore, the WRKY70-controlled suppression of A. brassicicola resistance was mainly through an NPR1-dependent mechanism. Taking all the data together, I suggest that the pathogen-responsive transcription factor WRKY70 is a common component in both SA- and JA-dependent pathways and plays a crucial role in the SA-mediated suppression of JA signaling.
Improving outcome of childhood bacterial meningitis by simplified treatment : Experience from Angola
Resumo:
Background Acute bacterial meningitis (BM) continues to be an important cause of childhood mortality and morbidity, especially in developing countries. Prognostic scales and the identification of risk factors for adverse outcome both aid in assessing disease severity. New antimicrobial agents or adjunctive treatments - except for oral glycerol - have essentially failed to improve BM prognosis. A retrospective observational analysis found paracetamol beneficial in adult bacteraemic patients, and some experts recommend slow β-lactam infusion. We examined these treatments in a prospective, double-blind, placebo-controlled clinical trial. Patients and methods A retrospective analysis included 555 children treated for BM in 2004 in the infectious disease ward of the Paediatric Hospital of Luanda, Angola. Our prospective study randomised 723 children into four groups, to receive a combination of cefotaxime infusion or boluses every 6 hours for the first 24 hours and oral paracetamol or placebo for 48 hours. The primary endpoints were 1) death or severe neurological sequelae (SeNeSe), and 2) deafness. Results In the retrospective study, the mortality of children with blood transfusion was 23% (30 of 128) vs. without blood transfusion 39% (109 of 282; p=0.004). In the prospective study, 272 (38%) of the children died. Of those 451 surviving, 68 (15%) showed SeNeSe, and 12% (45 of 374) were deaf. Whereas no difference between treatment groups was observable in primary endpoints, the early mortality in the infusion-paracetamol group was lower, with the difference (Fisher s exact test) from the other groups at 24, 48, and 72 hours being significant (p=0.041, 0.0005, and 0.005, respectively). Prognostic factors for adverse outcomes were impaired consciousness, dyspnoea, seizures, delayed presentation, and absence of electricity at home (Simple Luanda Scale, SLS); the Bayesian Luanda Scale (BLS) also included abnormally low or high blood glucose. Conclusions New studies concerning the possible beneficial effect of blood transfusion, and concerning longer treatment with cefotaxime infusion and oral paracetamol, and a study to validate our simple prognostic scales are warranted.