50 resultados para Firm return volatility
em Helda - Digital Repository of University of Helsinki
Resumo:
First, in Essay 1, we test whether it is possible to forecast Finnish Options Index return volatility by examining the out-of-sample predictive ability of several common volatility models with alternative well-known methods; and find additional evidence for the predictability of volatility and for the superiority of the more complicated models over the simpler ones. Secondly, in Essay 2, the aggregated volatility of stocks listed on the Helsinki Stock Exchange is decomposed into a market, industry-and firm-level component, and it is found that firm-level (i.e., idiosyncratic) volatility has increased in time, is more substantial than the two former, predicts GDP growth, moves countercyclically and as well as the other components is persistent. Thirdly, in Essay 3, we are among the first in the literature to seek for firm-specific determinants of idiosyncratic volatility in a multivariate setting, and find for the cross-section of stocks listed on the Helsinki Stock Exchange that industrial focus, trading volume, and block ownership, are positively associated with idiosyncratic volatility estimates––obtained from both the CAPM and the Fama and French three-factor model with local and international benchmark portfolios––whereas a negative relation holds between firm age as well as size and idiosyncratic volatility.
Resumo:
Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.
Resumo:
The increased availability of high frequency data sets have led to important new insights in understanding of financial markets. The use of high frequency data is interesting and persuasive, since it can reveal new information that cannot be seen in lower data aggregation. This dissertation explores some of the many important issues connected with the use, analysis and application of high frequency data. These include the effects of intraday seasonal, the behaviour of time varying volatility, the information content of various market data, and the issue of inter market linkages utilizing high frequency 5 minute observations from major European and the U.S stock indices, namely DAX30 of Germany, CAC40 of France, SMI of Switzerland, FTSE100 of the UK and SP500 of the U.S. The first essay in the dissertation shows that there are remarkable similarities in the intraday behaviour of conditional volatility across European equity markets. Moreover, the U.S macroeconomic news announcements have significant cross border effect on both, European equity returns and volatilities. The second essay reports substantial intraday return and volatility linkages across European stock indices of the UK and Germany. This relationship appears virtually unchanged by the presence or absence of the U.S stock market. However, the return correlation among the U.K and German markets rises significantly following the U.S stock market opening, which could largely be described as a contemporaneous effect. The third essay sheds light on market microstructure issues in which traders and market makers learn from watching market data, and it is this learning process that leads to price adjustments. This study concludes that trading volume plays an important role in explaining international return and volatility transmissions. The examination concerning asymmetry reveals that the impact of the positive volume changes is larger on foreign stock market volatility than the negative changes. The fourth and the final essay documents number of regularities in the pattern of intraday return volatility, trading volume and bid-ask spreads. This study also reports a contemporaneous and positive relationship between the intraday return volatility, bid ask spread and unexpected trading volume. These results verify the role of trading volume and bid ask quotes as proxies for information arrival in producing contemporaneous and subsequent intraday return volatility. Moreover, asymmetric effect of trading volume on conditional volatility is also confirmed. Overall, this dissertation explores the role of information in explaining the intraday return and volatility dynamics in international stock markets. The process through which the information is incorporated in stock prices is central to all information-based models. The intraday data facilitates the investigation that how information gets incorporated into security prices as a result of the trading behavior of informed and uninformed traders. Thus high frequency data appears critical in enhancing our understanding of intraday behavior of various stock markets’ variables as it has important implications for market participants, regulators and academic researchers.
Resumo:
In this paper, we examine the predictability of observed volatility smiles in three major European index options markets, utilising the historical return distributions of the respective underlying assets. The analysis involves an application of the Black (1976) pricing model adjusted in accordance with the Jarrow-Rudd methodology as proposed in 1982. Thereby we adjust the expected future returns for the third and fourth central moments as these represent deviations from normality in the distributions of observed returns. Thus, they are considered one possible explanation to the existence of the smile. The obtained results indicate that the inclusion of the higher moments in the pricing model to some extent reduces the volatility smile, compared with the unadjusted Black-76 model. However, as the smile is partly a function of supply, demand, and liquidity, and as such intricate to model, this modification does not appear sufficient to fully capture the characteristics of the smile.
Resumo:
This paper investigates to what extent the volatility of Finnish stock portfolios is transmitted through the "world volatility". We operationalize the volatility processes of Finnish leverage, industry, and size portfolio returns by asymmetric GARCH specifications according to Glosten et al. (1993). We use daily return data for January, 2, 1987 to December 30, 1998. We find that the world shock significantly enters the domestic models, and that the impact has increased over time. This applies also for the variance ratios, and the correlations to the world. The larger the firm, the larger is the world impact. The conditional variance is higher during recessions. The asymmetry parameter is surprisingly non-significant, and the leverage hypothesis cannot be verified. The return generating process of the domestic portfolio returns does usually not include the world information set, thus indicating that the returns are generated by a segmented conditional asset pricing model.
Relationship between Return, Volume and Volatility in the Ghana Stock Market (Available on Internet)
Resumo:
Perhaps the most fundamental prediction of financial theory is that the expected returns on financial assets are determined by the amount of risk contained in their payoffs. Assets with a riskier payoff pattern should provide higher expected returns than assets that are otherwise similar but provide payoffs that contain less risk. Financial theory also predicts that not all types of risks should be compensated with higher expected returns. It is well-known that the asset-specific risk can be diversified away, whereas the systematic component of risk that affects all assets remains even in large portfolios. Thus, the asset-specific risk that the investor can easily get rid of by diversification should not lead to higher expected returns, and only the shared movement of individual asset returns – the sensitivity of these assets to a set of systematic risk factors – should matter for asset pricing. It is within this framework that this thesis is situated. The first essay proposes a new systematic risk factor, hypothesized to be correlated with changes in investor risk aversion, which manages to explain a large fraction of the return variation in the cross-section of stock returns. The second and third essays investigate the pricing of asset-specific risk, uncorrelated with commonly used risk factors, in the cross-section of stock returns. The three essays mentioned above use stock market data from the U.S. The fourth essay presents a new total return stock market index for the Finnish stock market beginning from the opening of the Helsinki Stock Exchange in 1912 and ending in 1969 when other total return indices become available. Because a total return stock market index for the period prior to 1970 has not been available before, academics and stock market participants have not known the historical return that stock market investors in Finland could have achieved on their investments. The new stock market index presented in essay 4 makes it possible, for the first time, to calculate the historical average return on the Finnish stock market and to conduct further studies that require long time-series of data.
Resumo:
Liquidity, or how easy an investment is to buy or sell, is becoming increasingly important for financial market participants. The objective of this dissertation is to contribute to the understanding of how liquidity affects financial markets. The first essays analyze the actions taken by underwriters immediately after listing to improve liquidity of IPO stock. To estimate the impact of underwriter activity on the pricing of the IPOs, the order book during the first weeks of trading in the IPO stock is studied. Evidence of stabilization and liquidity enhancing activities by underwriters is found. The second half of the dissertation is concerned with the daily trading of stocks where liquidity may be impacted by policy issues such as changes in taxes or exchange fees and by opening the access to the markets for foreign investors. The desirability of a transaction tax on securities trading is addressed. An increase in transaction tax is found to cause lower prices and higher volatility. In the last essay the objective is to determine if the liquidity of a security has an impact on the return investors require. The results support the notion that returns are negatively correlated to liquidity.
Resumo:
The objective of this paper is to improve option risk monitoring by examining the information content of implied volatility and by introducing the calculation of a single-sum expected risk exposure similar to the Value-at-Risk. The figure is calculated in two steps. First, there is a need to estimate the value of a portfolio of options for a number of different market scenarios, while the second step is to summarize the information content of the estimated scenarios into a single-sum risk measure. This involves the use of probability theory and return distributions, which confronts the user with the problems of non-normality in the return distribution of the underlying asset. Here the hyperbolic distribution is used to describe one alternative for dealing with heavy tails. Results indicate that the information content of implied volatility is useful when predicting future large returns in the underlying asset. Further, the hyperbolic distribution provides a good fit to historical returns enabling a more accurate definition of statistical intervals and extreme events.
Resumo:
Volatility is central in options pricing and risk management. It reflects the uncertainty of investors and the inherent instability of the economy. Time series methods are among the most widely applied scientific methods to analyze and predict volatility. Very frequently sampled data contain much valuable information about the different elements of volatility and may ultimately reveal the reasons for time varying volatility. The use of such ultra-high-frequency data is common to all three essays of the dissertation. The dissertation belongs to the field of financial econometrics. The first essay uses wavelet methods to study the time-varying behavior of scaling laws and long-memory in the five-minute volatility series of Nokia on the Helsinki Stock Exchange around the burst of the IT-bubble. The essay is motivated by earlier findings which suggest that different scaling laws may apply to intraday time-scales and to larger time-scales, implying that the so-called annualized volatility depends on the data sampling frequency. The empirical results confirm the appearance of time varying long-memory and different scaling laws that, for a significant part, can be attributed to investor irrationality and to an intraday volatility periodicity called the New York effect. The findings have potentially important consequences for options pricing and risk management that commonly assume constant memory and scaling. The second essay investigates modelling the duration between trades in stock markets. Durations convoy information about investor intentions and provide an alternative view at volatility. Generalizations of standard autoregressive conditional duration (ACD) models are developed to meet needs observed in previous applications of the standard models. According to the empirical results based on data of actively traded stocks on the New York Stock Exchange and the Helsinki Stock Exchange the proposed generalization clearly outperforms the standard models and also performs well in comparison to another recently proposed alternative to the standard models. The distribution used to derive the generalization may also prove valuable in other areas of risk management. The third essay studies empirically the effect of decimalization on volatility and market microstructure noise. Decimalization refers to the change from fractional pricing to decimal pricing and it was carried out on the New York Stock Exchange in January, 2001. The methods used here are more accurate than in the earlier studies and put more weight on market microstructure. The main result is that decimalization decreased observed volatility by reducing noise variance especially for the highly active stocks. The results help risk management and market mechanism designing.
Resumo:
Atmospheric aerosol particles affect the global climate as well as human health. In this thesis, formation of nanometer sized atmospheric aerosol particles and their subsequent growth was observed to occur all around the world. Typical formation rate of 3 nm particles at varied from 0.01 to 10 cm-3s-1. One order of magnitude higher formation rates were detected in urban environment. Highest formation rates up to 105 cm-3s-1 were detected in coastal areas and in industrial pollution plumes. Subsequent growth rates varied from 0.01 to 20 nm h-1. Smallest growth rates were observed in polar areas and the largest in the polluted urban environment. This was probably due to competition between growth by condensation and loss by coagulation. Observed growth rates were used in the calculation of a proxy condensable vapour concentration and its source rate in vastly different environments from pristine Antarctica to polluted India. Estimated concentrations varied only 2 orders of magnitude, but the source rates for the vapours varied up to 4 orders of magnitude. Highest source rates were in New Delhi and lowest were in the Antarctica. Indirect methods were applied to study the growth of freshly formed particles in the atmosphere. Also a newly developed Water Condensation Particle Counter, TSI 3785, was found to be a potential candidate to detect water solubility and thus indirectly composition of atmospheric ultra-fine particles. Based on indirect methods, the relative roles of sulphuric acid, non-volatile material and coagulation were investigated in rural Melpitz, Germany. Condensation of non-volatile material explained 20-40% and sulphuric acid the most of the remaining growth up to a point, when nucleation mode reached 10 to 20 nm in diameter. Coagulation contributed typically less than 5%. Furthermore, hygroscopicity measurements were applied to detect the contribution of water soluble and insoluble components in Athens. During more polluted days, the water soluble components contributed more to the growth. During less anthropogenic influence, non-soluble compounds explained a larger fraction of the growth. In addition, long range transport to a measurement station in Finland in a relatively polluted air mass was found to affect the hygroscopicity of the particles. This aging could have implications to cloud formation far away from the pollution sources.
Resumo:
Large herbivores can influence plant and soil properties in grassland ecosystems, but especially for belowground biota and processes, the mechanisms that explain these effects are not fully understood. Here, we examine the capability of three grazing mechanisms-plant defoliation, dung and urine return, and physical presence of animals (causing trampling and excreta return in patches)-to explain grazing effects in Phleum pratense-Festuca pratensis dairy cow pasture in Finland. Comparison of control plots and plots grazed by cows showed that grazing maintained original plant-community structure, decreased shoot mass and root N and P concentrations, increased shoot N and P concentrations, and had an inconsistent effect on root mass. Among soil fauna, grazing increased the abundance of fungivorous nematodes and Aporrectodea earthworms and decreased the abundance of detritivorous enchytraeids and Lumbricus earthworms. Grazing also increased soil density and pH but did not affect average soil inorganic-N concentration. To reveal the mechanisms behind these effects, we analyzed results from mowed plots and plots that were both mowed and treated with a dung and urine mixture. This comparison revealed that grazing effects on plant attributes were almost entirely explained by defoliation, with only one partly explained by excreta return. Among belowground attributes, however, the mechanisms were more mixed, with effects explained by defoliation, patchy excreta return, and cow trampling. Average soil inorganic-N concentration was not affected by grazing because it was simultaneously decreased by defoliation and increased by cow presence. Presence of cows created great spatial heterogeneity in soil N availability and abundance of fungivorous nematodes. A greenhouse trial revealed a grazing-induced soil feedback on plant growth, which was explained by patchiness in N availability rather than changes in soil biota. Our results show that grazing effects on plant attributes can be satisfactorily predicted using the effects of defoliation, whereas those on soil fauna and soil N availability need understanding of other mechanisms as well. The results indicate that defoliation-induced changes in plant ecophysiology and the great spatial variation in N availability created by grazers are the two key mechanisms through which large herbivores can control grassland ecosystems.
Resumo:
This paper examines the impact of a regime shift on the valuation of politically powerful oligarch firms. Focusing on the Yeltsin-Putin regime shift in Russia, we find that the valuations of outside shareholders claims are significantly higher under the Putin regime than under the Yeltsin regime after controlling for industry and time effects. The findings suggest that the increasing cost of extracting private benefits outweigh the reduction in the value of political connections following the political regime change. The results are also consistent with changes in the risk of state expropriation. Our results show that effects driven by the political regime change complement the traditional view stating that increased ownership concentration improved the performance of Russian oligarch firms.