13 resultados para Factor model
em Helda - Digital Repository of University of Helsinki
Resumo:
In recent years, thanks to developments in information technology, large-dimensional datasets have been increasingly available. Researchers now have access to thousands of economic series and the information contained in them can be used to create accurate forecasts and to test economic theories. To exploit this large amount of information, researchers and policymakers need an appropriate econometric model.Usual time series models, vector autoregression for example, cannot incorporate more than a few variables. There are two ways to solve this problem: use variable selection procedures or gather the information contained in the series to create an index model. This thesis focuses on one of the most widespread index model, the dynamic factor model (the theory behind this model, based on previous literature, is the core of the first part of this study), and its use in forecasting Finnish macroeconomic indicators (which is the focus of the second part of the thesis). In particular, I forecast economic activity indicators (e.g. GDP) and price indicators (e.g. consumer price index), from 3 large Finnish datasets. The first dataset contains a large series of aggregated data obtained from the Statistics Finland database. The second dataset is composed by economic indicators from Bank of Finland. The last dataset is formed by disaggregated data from Statistic Finland, which I call micro dataset. The forecasts are computed following a two steps procedure: in the first step I estimate a set of common factors from the original dataset. The second step consists in formulating forecasting equations including the factors extracted previously. The predictions are evaluated using relative mean squared forecast error, where the benchmark model is a univariate autoregressive model. The results are dataset-dependent. The forecasts based on factor models are very accurate for the first dataset (the Statistics Finland one), while they are considerably worse for the Bank of Finland dataset. The forecasts derived from the micro dataset are still good, but less accurate than the ones obtained in the first case. This work leads to multiple research developments. The results here obtained can be replicated for longer datasets. The non-aggregated data can be represented in an even more disaggregated form (firm level). Finally, the use of the micro data, one of the major contributions of this thesis, can be useful in the imputation of missing values and the creation of flash estimates of macroeconomic indicator (nowcasting).
Resumo:
This thesis examines the associations between personality traits and sleep quantity and quality in young adults. Additionally the possible effects of birth status on these associations are examined. The data used in this thesis is part of a birth cohort study (Helsinki Study of Very Low Birth Weight Adults). The personality traits are based on the five-factor model of personality. The sleep quantity and quality are based on actigraphy assessments. Four hypothesis were made about the personality and sleep associations: (1) neuroticism is related to a lesser quality of sleep, (2) there will be more significant associations between personality traits and sleep quality than between personality traits and sleep quantity, (3) the Very Low Birth Weight (VLBW) as well as, (4) the Small for Gestational Age (SGA) status will affect the associations. Linear regressions were used to study the associations between personality traits and sleep quality and quantity. Whenever an association was significant, it was tested whether this association was moderated first, by the VLBW and second, by the SGA status of the participant. The results were mostly in line with previous research especially demonstrating the negative association between neuroticism and the quality of sleep and suggesting that vulnerability to stress decreases sleep quality. Also it was found that agreeableness and conscientiousness were associated with better sleep quality and extraversion was associated with lower sleep quantity. In addition SGA status moderated the personality and sleep associations. It is proposed that there are two factors behind the interaction. First, prenatally developing mechanisms have an effect on the development of sleep as well as personality. Second, differences in the postnatal environment, for instance the parenting practices, can account for this finding. Future research could focus especially on what kind of prenatal disturbances SGA infants have in the development of mechanisms related to sleep and personality. Also focusing on the differences in parental interaction might shed more light on the results.
Resumo:
First, in Essay 1, we test whether it is possible to forecast Finnish Options Index return volatility by examining the out-of-sample predictive ability of several common volatility models with alternative well-known methods; and find additional evidence for the predictability of volatility and for the superiority of the more complicated models over the simpler ones. Secondly, in Essay 2, the aggregated volatility of stocks listed on the Helsinki Stock Exchange is decomposed into a market, industry-and firm-level component, and it is found that firm-level (i.e., idiosyncratic) volatility has increased in time, is more substantial than the two former, predicts GDP growth, moves countercyclically and as well as the other components is persistent. Thirdly, in Essay 3, we are among the first in the literature to seek for firm-specific determinants of idiosyncratic volatility in a multivariate setting, and find for the cross-section of stocks listed on the Helsinki Stock Exchange that industrial focus, trading volume, and block ownership, are positively associated with idiosyncratic volatility estimates––obtained from both the CAPM and the Fama and French three-factor model with local and international benchmark portfolios––whereas a negative relation holds between firm age as well as size and idiosyncratic volatility.
Resumo:
In the ovary, two new members of the large TGF-beta superfamily of growth factors were discovered in the 1990s. The oocyte was shown to express two closely related growth factors that were named growth differentiation factor 9 (GDF-9) and growth differentiation factor 9B (GDF-9B). Both of these proteins are required for normal ovarian follicle development although their individual significance varies between species. GDF-9 and GDF-9B mRNAs are expressed in the human oocytes from the primary follicle stage onwards. This thesis project was aimed to define the signalling mechanisms utilized by the oocyte secreted GDF-9. We used primary cultures of human granulosa luteal cells (hGL) as our cell model, and recombinant adenovirus-mediated gene transfer in manipulating the TGF-b family signalling cascade molecules in these cells. Overexpression of the constitutively active forms of the seven type I receptors, the activin receptor-like kinases 1-7 (ALK1-7), using recombinant adenoviruses caused a specific activation of either the Smad1 or Smad2 pathway proteins depending on the ALK used. Activation of both Smad1 and Smad2 proteins also stimulated the expression of dimeric inhibin B protein in hGL cells. Treatment with recombinant GDF-9 protein induced the specific activation of the Smad2 pathway and stimulated the expression of inhibin betaB subunit mRNA as well as inhibin B protein secretion in our cell model. Recombinant GDF-9 also activated the Smad3-responsive CAGA-luciferase reported construct, and the GDF-9 response in hGL cells was markedly potentiated upon the overexpression of Alk5 by adenoviral gene transduction. Alk5 overexpression also enhanced the GDF-9 induced inhibin B secretion by these cells. Similarly, in a mouse teratocarcinoma cell line P19, GDF-9 could activate the Smad2/3 pathway, and overexpression of ALK5 in COS7 cells rendered them responsive to GDF-9. Furthermore, transfection of rat granulosa cells with small interfering RNA for ALK5 or overexpression of the inhibitory Smad7 resulted in dose-dependent suppression of GDF-9 effects. In conclusion, this thesis shows that both Smad1 and Smad2 pathways are involved in controlling the regulation of inhibin B secretion. Therefore, in addition to endocrine control of inhibin production by the pituitary gonadotropins, also local paracrine factors within in the ovary, like the oocyte-derived growth factors, may contribute to controlling inhibin secretion. This thesis shows as well that like other TGF-beta family ligands, also GDF-9 signalling is mediated by the canonical type I and type II receptors with serine/threonine kinase activity, and the intracellular transcription factors, the Smads. Although GDF-9 binds to the BMP type II receptor, its downstream actions are specifically mediated by the type I receptor, ALK5, and the Smad2 and Smad3 proteins.
Resumo:
This thesis clarifies important molecular pathways that are activated during the cell death observed in Huntington’s disease. Huntington’s disease is one of the most common inherited neurodegenerative diseases, which is primarily inherited in an autosomal dominant manner. HD is caused by an expansion of CAG repeats in the first exon of the IT15 gene. IT15 encodes the production of a Huntington’s disease protein huntingtin. Mutation of the IT15 gene results in a long stretch of polyQ residues close to the amino-terminal region of huntingtin. Huntington’s disease is a fatal autosomal neurodegenerative disorder. Despite the current knowledge of HD, the precise mechanism behind the selective neuronal death, and how the disease propagates, still remains an enigma. The studies mainly focused on the control of endoplasmic reticulum (ER) stress triggered by the mutant huntingtin proteins. The ER is a delicate organelle having essential roles in protein folding and calcium regulation. Even the slightest perturbations on ER homeostasis are effective enough to trigger ER stress and its adaptation pathways, called unfolded protein response (UPR). UPR is essential for cellular homeostasis and it adapts ER to the changing environment and decreases ER stress. If adaptation processes fail and stress is excessive and prolonged; irreversible cell death pathways are engaged. The results showed that inhibition of ER stress with chemical agents are able to decrease cell death and formation of toxic cell aggregates caused by mutant huntingtin proteins. The study concentrated also to the NF-κB (nuclear factor-kappaB) pathway, which is activated during ER stress. NF-κB pathway is capable to regulate the levels of important cellular antioxidants. Cellular antioxidants provide a first line of defence against excess reactive oxygen species. Excess accumulation of reactive oxygen species and subsequent activation of oxidative stress damages motley of vital cellular processes and induce cell degeneration. Data showed that mutant huntingtin proteins downregulate the expression levels of NF-κB and vital antioxidants, which was followed by increased oxidative stress and cell death. Treatment with antioxidants and inhibition of oxidative stress were able to counteract these adverse effects. In addition, thesis connects ER stress caused by mutant huntingtin to the cytoprotective autophagy. Autophagy sustains cellular balance by degrading potentially toxic cell proteins and components observed in Huntington’s disease. The results revealed that cytoprotective autophagy is active at the early points (24h) of ER stress after expression of mutant huntingtin proteins. GADD34 (growth arrest and DNA damage-inducible gene 34), which is previously connected to the regulation of translation during cell stress, was shown to control the stimulation of autophagy. However, GADD34 and autophagy were downregulated at later time points (48h) during mutant huntingtin proteins induced ER stress, and subsequently cell survival decreased. Overexpression GADD34 enhanced autophagy and decreased cell death, indicating that GADD34 plays a critical role in cell protection. The thesis reveales new interesting data about the neuronal cell death pathways seen in Huntington’s disease, and how cell degeneration is partly counteracted by various therapeutic agents. Expression of mutant huntingtin proteins is shown to alter signaling events that control ER stress, oxidative stress and autophagy. Despite that Huntington’s disease is mainly an untreatable disorder; these findings offer potential targets and neuroprotective strategies in designing novel therapies for Huntington’s disease.
Resumo:
Wound healing is a complex process that requires an interplay between several cell types. Classically, fibroblasts have been viewed as producers of extracellular matrix, but more recently they have been recognized as orchestrators of the healing response, promoting and directing, inflammation and neovascularization processes. Compared to those from healthy tissue, inflammation-associated fibroblasts display a dramatically altered phenotype and have been described as sentinel cells, able to switch to an immunoregulatory profile on cue. However, the activation mechanism still remains largely uncharacterized. Nemosis is a model for stromal fibroblast activation. When normal human primary fibroblasts are deprived of growth support they cluster, forming multicellular spheroids. Clustering results in upregulation of proinflammatory markers such as cyclooxygenase-2 and secretion of prostaglandins, proteinases, cytokines, and growth factors. Fibroblasts in nemosis induce wound healing and tumorigenic responses in many cell types found in inflammatory and tumor microenvironments. This study investigated the effect of nemotic fibroblasts on two components of the vascular system, leukocytes and endothelium, and characterized the inflammation-promoting responses that arose in these cell types. Fibroblasts in nemosis were found to secrete an array of chemotactic cytokines and attract leukocytes, as well as promote their adhesion to the endothelium. Nuclear factor-kB, the master regulator of many inflammatory responses, is activated in nemotic fibroblasts. Nemotic fibroblasts are known to produce large amounts of hepatocyte growth factor, a motogenic and angiogenic factor. Also, as shown in this study, they produce vascular endothelial growth factor. These two factors induced migratory and sprouting responses in endothelial cells, both required for neovascularization. Nemotic fibroblasts also caused a decrease in the expression of adherens and tight junction components on the surface of endothelial cells. The results allow the conclusion that fibroblasts in nemosis share many similarities with inflammation-associated fibroblasts. Both inflammation and stromal fibroblasts are known to be involved in tumorigenesis and tumor progression. Nemosis may be viewed as a model for stromal fibroblast activation, or it may correlate with cell-cell interactions between adjacent fibroblasts in vivo. Nevertheless, due to nemosis-derived production of proinflammatory cytokines and growth factors, fibroblast nemosis may have therapeutic potential as an inducer of controlled tissue repair. Knowledge of stromal fibroblast activation gained through studies of nemosis, could provide new strategies to control unwanted inflammation and tumor progression.
Resumo:
Transforming growth factor β signalling through Smad3 in allergy Allergic diseases, such as atopic dermatitis, asthma, and contact dermatitis are complex diseases influenced by both genetic and environmental factors. It is still unclear why allergy and subsequent allergic disease occur in some individuals but not in others. Transforming growth factor (TGF)-β is an important immunomodulatory and fibrogenic factor that regulates cellular processes in injured and inflamed skin. TGF-β has a significant role in the regulation of the allergen-induced immune response participating in the development of allergic and asthmatic inflammation. TGF-β is known to be an immunomodulatory factor in the progression of delayed type hypersensitivity reactions and allergic contact dermatitis. TGF-β is crucial in regulating the cellular responses involved in allergy, such as differentiation, proliferation and migration. TGF-β signals are delivered from the cytoplasm to the nucleus by TGF-β signal transducers called Smads. Smad3 is a major signal transducer in TGF-β -signalling that controls the expression of target genes in the nucleus in a cell-type specific manner. The role of TGF-β-Smad3 -signalling in the immunoregulation and pathophysiology of allergic disorders is still poorly understood. In this thesis, the role of TGF-β-Smad -signalling pathway using Smad3 -deficient knock out mice in the murine models of allergic diseases; atopic dermatitis, asthma and allergic contact reactions, was examined. Smad3-pathway regulates allergen induced skin inflammation and systemic IgE antibody production in a murine model atopic dermatitis. The defect in Smad3 -signalling decreased Th2 cytokine (IL-13 and IL-5) mRNA expression in the lung, modulated allergen induced specific IgG1 response, and affected mucus production in the lung in a murine model of asthma. TGF-β / Smad3 -signalling contributed to inflammatory hypersensitivity reactions and disease progression via modulation of chemokine and cytokine expression and inflammatory cell recruitment, cell proliferation and regulation of the specific antibody response in a murine model of contact hypersensitivity. TGF-β modulates inflammatory responses - at least partly through the Smad3 pathway - but also through other compensatory, non-Smad-dependent pathways. Understanding the effects of the TGF-β signalling pathway in the immune system and in disease models can help in elucidating the multilevel effects of TGF-β. Unravelling the mechanisms of Smad3 may open new possibilities for treating and preventing allergic responses, which may lead to severe illness and loss of work ability. In the future the Smad3 signalling pathway might be a potential target in the therapy of allergic diseases.
Resumo:
The intervertebral disc is composed of concentrically arranged components: annulus fibrosus, the transition zone, and central nucleus pulposus. The major disc cell type differs in various parts of the intervertebral disc. In annulus fibrosus a spindle shaped fibroblast-like cell mainly dominates, whereas in central nucleus pulposus the more rounded chondrocyte-like disc cell is the major cell type. At birth the intervertebral disc is well vascularized, but during childhood and adolescence blood vessels become smaller and less numerous. The adult intervertebral disc is avascular and is nourished via the cartilage endplates. On the other hand, degenerated and prolapsed intervertebral discs are again vascularized, and show many changes compared to normal discs, including: nerve ingrowth, change in collagen turnover, and change in water content. Furthermore, the prolapsed intervertebral disc tissue has a tendency to decrease in size over time. Growth factors are polypeptides which regulate cell growth, extracellular matrix protease activity, and vascularization. Oncoproteins c-Fos and c-Jun heterodimerize, forming the AP-1 transcription factor which is expressed in activated cells. In this thesis the differences of growth factor expression in normal intervertebral disc, the degenerated intervertebral disc and herniated intervertebral disc were analyzed. Growth factors of particular interest were basic fibroblast growth factor (bFGF or FGF-2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and transforming growth factor beta (TGFβ). Cell activation was visualized by the expression of the AP-1 transcription promoters c-Fos and c-Jun. The expression was shown with either mono- or polyclonal antibodies by indirect avidin-biotin-peroxidase immunohistochemical staining method. The normal control material was collected from a tissue bank of five organ donors. The degenerated disc material was from twelve patients operated on for painful degenerative disc disease, and herniated disc tissue material was obtained from 115 patients operated on for sciatica. Normal control discs showed only TGFβ immunopositivity. All other factors studied were immunonegative in the control material. Prolapsed disc material was immunopositive for all factors studied, and this positivity was located either in the disc cells or in blood vessels. Furthermore, neovascularization was noted. Disc cell immunoreaction was shown in chondrocyte-like disc cells or in fibroblast-like disc cells, the former being expressed especially in conglomerates (clusters of disc cells). TGFβ receptor induction was prominent in prolapsed intervertebral disc tissue. In degenerated disc material, the expression of growth factors was analyzed in greater detail in various parts of the disc: nucleus pulposus, anterior annulus fibrosus and posterior annulus fibrosus. PDGF did not show any immunoreactivity, whereas all other studied growth factors were localized either in chondrocyte-like disc cells, often forming clusters, in fibroblast-like disc cells, or in small capillaries. Many of the studied degenerated discs showed tears in the posterior region of annulus fibrosus, but expression of immunopositive growth factors was detected throughout the entire disc. Furthermore, there was a difference in immunopositive cell types for different growth factors. The main conclusion of the thesis, supported by all substudies, is the occurrence of growth factors in disc cells. They may be actively participating in a network regulating disc cell growth, proliferation, extracellular matrix turnover, and neovascularization. Chondrocyte-like disc cells, in particular, expressed growth factors and oncoproteins, highlighting the importance of this cell type in the basic pathophysiologic events involved in disc degeneration and disc rearrangement. The thesis proposes a hypothesis for cellular remodelling in intervertebral disc tissue. In summary, the model presents an activation pattern of different growth factors at different intervertebral disc stages, mechanisms leading to neovascularization of the intervertebral disc in pathological conditions, and alteration of disc cell shape, especially in annulus fibrosus. Chondrocyte-like disc cells become more numerous, and these cells are capable of forming clusters, which appear to be regionally active within the disc. The alteration of the phenotype of disc cells expressing growth factors from fibroblast-like disc cells to chondrocyte-like cells in annulus fibrosus, and the numerous expression of growth factor expressing disc cells in nucleus pulposus, may be a key element both during pathological degeneration of the intervertebral disc, and during the healing process after trauma.
Resumo:
Heart failure is a common and highly challenging medical disorder. The progressive increase of elderly population is expected to further reflect in heart failure incidence. Recent progress in cell transplantation therapy has provided a conceptual alternative for treatment of heart failure. Despite improved medical treatment and operative possibilities, end-stage coronary artery disease present a great medical challenge. It has been estimated that therapeutic angiogenesis would be the next major advance in the treatment of ischaemic heart disease. Gene transfer to augment neovascularization could be beneficial for such patients. We employed a porcine model to evaluate the angiogenic effect of vascular endothelial growth factor (VEGF)-C gene transfer. Ameroid-generated myocardial ischemia was produced and adenovirus encoding (ad)VEGF-C or β-galactosidase (LacZ) gene therapy was given intramyocardially during progressive coronary stenosis. Angiography, positron emission tomography (PET), single photon emission computed tomography (SPECT) and histology evidenced beneficial affects of the adVEGF-C gene transfer compared to adLacZ. The myocardial deterioration during progressive coronary stenosis seen in the control group was restrained in the treatment group. We observed an uneven occlusion rate of the coronary vessels with Ameroid constrictor. We developed a simple methodological improvement of Ameroid model by ligating of the Ameroid–stenosed coronary vessel. Improvement of the model was seen by a more reliable occlusion rate of the vessel concerned and a formation of a rather constant myocardial infarction. We assessed the spontaneous healing of the left ventricle (LV) in this new model by SPECT, PET, MRI, and angiography. Significant spontaneous improvement of myocardial perfusion and function was seen as well as diminishment of scar volume. Histologically more microvessels were seen in the border area of the lesion. Double staining of the myocytes in mitosis indicated more cardiomyocyte regeneration at the remote area of the lesion. The potential of autologous myoblast transplantation after ischaemia and infarction of porcine heart was evaluated. After ligation of stenosed coronary artery, autologous myoblast transplantation or control medium was directly injected into the myocardium at the lesion area. Assessed by MRI, improvement of diastolic function was seen in the myoblast-transplanted animals, but not in the control animals. Systolic function remained unchanged in both groups.
Resumo:
Parkinson s disease (PD) is a neurodegenerative disorder associated with a progressive loss of dopaminergic neurons of the substantia nigra (SN). Current therapies of PD do not stop the progression of the disease and the efficacy of these treatments wanes over time. Neurotrophic factors are naturally occurring proteins promoting the survival and differentiation of neurons and the maintenance of neuronal contacts. Neurotrophic factors are attractive candidates for neuroprotective or even neurorestorative treatment of PD. Thus, searching for and characterizing trophic factors are highly important approaches to degenerative diseases. CDNF (cerebral dopamine neurotrophic factor) and MANF (mesencephalic astrocyte-derived neurotrophic factor) are secreted proteins that constitute a novel, evolutionarily conserved neurotrophic factor family expressed in vertebrates and invertebrates. The present study investigated the neuroprotective and restorative effects of human CDNF and MANF in rats with unilateral partial lesion of dopamine neurons by 6-hydroxydopamine (6-OHDA) using both behavioral (amphetamine-induced rotation) and immunohistochemical analyses. We also investigated the distribution and transportation profiles of intrastriatally injected CDNF and MANF in rats. Intrastriatal CDNF and MANF protected nigrostriatal dopaminergic neurons when administered six hours before or four weeks after the neurotoxin 6-OHDA. More importantly, the function of the lesioned nigrostriatal dopaminergic system was partially restored even when the neurotrophic factors were administered four weeks after 6-OHDA. A 14-day continuous infusion of CDNF but not of MANF restored the function of the midbrain neural circuits controlling movement when initiated two weeks after unilateral injection of 6-OHDA. Continuous infusion of CDNF also protected dopaminergic TH-positive cell bodies from toxin-induced degeneration in the substantia nigra pars compacta (SNpc) and fibers in the striatum. When injected into the striatum, CDNF and GDNF had similar transportation profiles from the striatum to the SNpc; thus CDNF may act via the same nerve tracts as GDNF. Intrastriatal MANF was transported to cortical areas which may reflect a mechanism of neurorestorative action that is different from that of CDNF and GDNF. CDNF and MANF were also shown to distribute more readily than GDNF. In conclusion, CDNF and MANF are potential therapeutic proteins for the treatment of PD.
Resumo:
Type 2 diabetes is a risk factor for the development of cardiovascular disease. Recently, the term diabetic cardiomyopathy has been proposed to describe the changes in the heart that occur in response to chronic hyperglycemia and insulin resistance. Ventricular remodelling in diabetic cardiomyopathy includes left ventricular hypertrophy, increased interstitial fibrosis, apoptosis and diastolic dysfunction. Mechanisms behind these changes are increased oxidative stress and renin-angiotensin system activation. The diabetic Goto-Kakizaki rat is a non-obese model of type 2 diabetes that exhibits defective insulin signalling. Recently two interconnected stress response pathways have been discovered that link insulin signalling, longevity, apoptosis and cardiomyocyte hypertrophy. The insulin-receptor PI3K/Ak pathway inhibits proapoptotic FOXO3a in response to insulin signalling and the nuclear Sirt1 deacetylase inhibits proapoptotic p53 and modulates FOXO3a in favour of survival and growth. --- Levosimendan is a calcium sensitizing agent used for the management of acute decompensated heart failure. Levosimendan acts as a positive inotrope by sensitizing cardiac troponin C to calcium and exerts vasodilation by opening mitochondrial and sarcolemmal ATP-sensitive potassium channels. Levosimendan has been described to have beneficial effects in ventricular remodelling after myocardial infarction. The aims of the study were to characterize whether diabetic cardiomyopathy associates with cardiac dysfunction, cardiomyocyte apoptosis, hypertrophy and fibrosis in spontaneously diabetic Goto-Kakizaki (GK) rats, which were used to model type 2 diabetes. Protein expression and activation of the Akt FOXO3a and Sirt1 p53 pathways were examined in the development of ventricular remodelling in GK rats with and without myocardial infarction (MI). The third and fourth studies examined the effects of levosimendan on ventricular remodelling and gene expression in post-MI GK rats. The results demonstrated that diabetic GK rats develop both modest hypertension and features similar to diabetic cardiomyopathy including cardiac dysfunction, LV hypertrophy and fibrosis and increased apoptotic signalling. MI induced a sustained increase in cardiomyocyte apoptosis in GK rats together with aggravated LV hypertrophy and fibrosis. The GK rat myocardium exhibited decreased Akt- FOXO3a phosphorylation and increased nuclear translocation of FOXO3a and overproduction of the Sirt1 protein. Treatment with levosimendan decreased cardiomyocyte apoptosis, senescence and LV hypertrophy and altered the gene expression profile in GK rat myocardium. The findings indicate that impaired cardioprotection via Akt FOXO3a and p38 MAPK is associated with increased apoptosis, whereas Sirt1 functions in counteracting apoptosis and the development of LV hypertrophy in the GK rat myocardium. Overall, levosimendan treatment protects against post-MI ventricular remodelling and alters the gene expression profile in the GK rat myocardium.
Resumo:
The aim of this dissertation is to model economic variables by a mixture autoregressive (MAR) model. The MAR model is a generalization of linear autoregressive (AR) model. The MAR -model consists of K linear autoregressive components. At any given point of time one of these autoregressive components is randomly selected to generate a new observation for the time series. The mixture probability can be constant over time or a direct function of a some observable variable. Many economic time series contain properties which cannot be described by linear and stationary time series models. A nonlinear autoregressive model such as MAR model can a plausible alternative in the case of these time series. In this dissertation the MAR model is used to model stock market bubbles and a relationship between inflation and the interest rate. In the case of the inflation rate we arrived at the MAR model where inflation process is less mean reverting in the case of high inflation than in the case of normal inflation. The interest rate move one-for-one with expected inflation. We use the data from the Livingston survey as a proxy for inflation expectations. We have found that survey inflation expectations are not perfectly rational. According to our results information stickiness play an important role in the expectation formation. We also found that survey participants have a tendency to underestimate inflation. A MAR model has also used to model stock market bubbles and crashes. This model has two regimes: the bubble regime and the error correction regime. In the error correction regime price depends on a fundamental factor, the price-dividend ratio, and in the bubble regime, price is independent of fundamentals. In this model a stock market crash is usually caused by a regime switch from a bubble regime to an error-correction regime. According to our empirical results bubbles are related to a low inflation. Our model also imply that bubbles have influences investment return distribution in both short and long run.
Resumo:
Purpose – This research paper studies how the strategy of repositioning enables marketers to communicate CSR as their brand’s differentiating factor. It aims at understanding how consumer perceptions can be managed to generate brand value through corporate brand repositioning when CSR is the differentiating factor. The purpose of this paper is to answer the following research question: How can consumer perceptions be managed to generate brand value through corporate brand repositioning when CSR is the differentiating factor? The two research objectives were: 1. to build a model, which describes the different components of consumer perceptions involved in generation of brand value through repositioning when CSR is the differentiating factor, 2. to identify the most critical components in the context of the case company, IKEA for generation of brand value during the process of corporate brand repositioning Design/methodology/approach – This paper is based on the literature review covering the logic of brand value generation, repositioning strategy and consumer perceptions connected to CSR activities. A key concept of the positioning theory, the brand’s differentiating factor, was explored. Previous studies have concluded that desirability of the differentiating factor largely determines the level of brand value-creation for the target customers. The criterion of desirability is based on three dimensions: relevance, distinctiveness and believability. A model was built in terms of these desirability dimensions. This paper takes a case study approach where the predefined theoretical framework is tested using IKEA as the case company. When developing insights on the multifaceted nature of brand perceptions, personal interviews and individual probing are vital. They enable the interviewees to reflect on their feelings and perceptions with their own words. This is why the data collection was based on means-end type of questioning. Qualitative interviews were conducted with 12 consumers. Findings – The paper highlights five critical components that may determine whether IKEA will fail in its repositioning efforts. The majority of the critical components involved believability perceptions. Hence, according to the findings, establishing credibility and trustworthiness for the brand in the context of CSR seems primary. The most critical components identified of the believability aspect were: providing proof of responsible codes of conduct via conducting specific and concrete CSR actions, connecting the company’s products and the social cause, and building a linkage between the initial and new positioning while also weakening the old positioning. Originality/value – Marketers’ obligation is to prepare the company for future demands. Companies all over the globe have recognized the durable trend of responsibility and sustainability. Consumer´s worry about the environmental and social impact of modern lifestyles is growing. This is why Corporate Social Responsibility (CSR) provides brands an important source of differentiation and strength in the future. The strategy of repositioning enables marketers to communicate CSR as their brand’s differentiating factor. This study aimed at understanding how consumer perceptions can be managed to generate brand value through corporate brand repositioning when CSR is the differentiating factor.