7 resultados para Face numbers
em Helda - Digital Repository of University of Helsinki
Resumo:
The aim of this dissertation is to provide conceptual tools for the social scientist for clarifying, evaluating and comparing explanations of social phenomena based on formal mathematical models. The focus is on relatively simple theoretical models and simulations, not statistical models. These studies apply a theory of explanation according to which explanation is about tracing objective relations of dependence, knowledge of which enables answers to contrastive why and how-questions. This theory is developed further by delineating criteria for evaluating competing explanations and by applying the theory to social scientific modelling practices and to the key concepts of equilibrium and mechanism. The dissertation is comprised of an introductory essay and six published original research articles. The main theses about model-based explanations in the social sciences argued for in the articles are the following. 1) The concept of explanatory power, often used to argue for the superiority of one explanation over another, compasses five dimensions which are partially independent and involve some systematic trade-offs. 2) All equilibrium explanations do not causally explain the obtaining of the end equilibrium state with the multiple possible initial states. Instead, they often constitutively explain the macro property of the system with the micro properties of the parts (together with their organization). 3) There is an important ambivalence in the concept mechanism used in many model-based explanations and this difference corresponds to a difference between two alternative research heuristics. 4) Whether unrealistic assumptions in a model (such as a rational choice model) are detrimental to an explanation provided by the model depends on whether the representation of the explanatory dependency in the model is itself dependent on the particular unrealistic assumptions. Thus evaluating whether a literally false assumption in a model is problematic requires specifying exactly what is supposed to be explained and by what. 5) The question of whether an explanatory relationship depends on particular false assumptions can be explored with the process of derivational robustness analysis and the importance of robustness analysis accounts for some of the puzzling features of the tradition of model-building in economics. 6) The fact that economists have been relatively reluctant to use true agent-based simulations to formulate explanations can partially be explained by the specific ideal of scientific understanding implicit in the practise of orthodox economics.
Resumo:
The neural basis of visual perception can be understood only when the sequence of cortical activity underlying successful recognition is known. The early steps in this processing chain, from retina to the primary visual cortex, are highly local, and the perception of more complex shapes requires integration of the local information. In Study I of this thesis, the progression from local to global visual analysis was assessed by recording cortical magnetoencephalographic (MEG) responses to arrays of elements that either did or did not form global contours. The results demonstrated two spatially and temporally distinct stages of processing: The first, emerging 70 ms after stimulus onset around the calcarine sulcus, was sensitive to local features only, whereas the second, starting at 130 ms across the occipital and posterior parietal cortices, reflected the global configuration. To explore the links between cortical activity and visual recognition, Studies II III presented subjects with recognition tasks of varying levels of difficulty. The occipito-temporal responses from 150 ms onwards were closely linked to recognition performance, in contrast to the 100-ms mid-occipital responses. The averaged responses increased gradually as a function of recognition performance, and further analysis (Study III) showed the single response strengths to be graded as well. Study IV addressed the attention dependence of the different processing stages: Occipito-temporal responses peaking around 150 ms depended on the content of the visual field (faces vs. houses), whereas the later and more sustained activity was strongly modulated by the observers attention. Hemodynamic responses paralleled the pattern of the more sustained electrophysiological responses. Study V assessed the temporal processing capacity of the human object recognition system. Above sufficient luminance, contrast and size of the object, the processing speed was not limited by such low-level factors. Taken together, these studies demonstrate several distinct stages in the cortical activation sequence underlying the object recognition chain, reflecting the level of feature integration, difficulty of recognition, and direction of attention.
Resumo:
The multiplier ideals of an ideal in a regular local ring form a family of ideals parametrized by non-negative rational numbers. As the rational number increases the corresponding multiplier ideal remains unchanged until at some point it gets strictly smaller. A rational number where this kind of diminishing occurs is called a jumping number of the ideal. In this manuscript we shall give an explicit formula for the jumping numbers of a simple complete ideal in a two dimensional regular local ring. In particular, we obtain a formula for the jumping numbers of an analytically irreducible plane curve. We then show that the jumping numbers determine the equisingularity class of the curve.
Resumo:
This thesis focuses on a connection between temporality and ethics in the philosophy of Emmanuel Levinas. I argue that Levinas understanding of temporality is rooted in the function of pra-impression which in its turn does not belong to the intentional consciousness but reveals a subject as being open to the Other. In the face-to-face situation with the Other the pra-impression is an essential and constitutive force: it fractures the moment of the present, questions subjectivity and generates a new meaning of temporality. As a result a responsible subject is revealed; responsibility for the Other marks a latent birth of the subject which is prior to any origin of subjectivity, it discloses a meaning of time that does not belong to the subject but is found in the Other. In this study I suggest that pra-impression finds its productive force in language, the function of the feminine, and what Levinas calls the other in the same .
Resumo:
Individuals face variable environmental conditions during their life. This may be due to migration, dispersion, environmental changes or, for example, annual variation in weather conditions. Genetic adaptation to a novel environment happens through natural selection. Phenotypic plasticity allows, however, a quick individual response to a new environment. Phenotypic plasticity may also be beneficial for individual if the environment is highly variable. For example, eggs are costly to produce. If the food conditions vary significantly between breeding seasons it is useful to be able to adjust the clutch and egg size according to the food abundance. In this thesis I use Ural owl vole system to study phenotypic plasticity and natural selection using a number of reproduction related traits. The Ural owl (Strix uralensis) is a long-lived and sedentary species. The reproduction and survival of the Ural owl, in fact their whole life, is tied to the dramatically fluctuating vole densities. Ural owls do not cause vole cycles but they have to adjust their behaviour to the rather predictable population fluctuations of these small mammals. Earlier work with this system has shown that Ural owl laying date and clutch size are plastic in relation to vole abundance. Further, individual laying date clutch size reaction norms have been shown to vary in the amount of plasticity. My work extends the knowledge of natural selection and phenotypic plasticity in traits related to reproduction. I show that egg size, timing of the onset of incubation and nest defense aggressiveness are plastic traits with fitness consequences for the Ural owl. Although egg size is in general thought to be a fixed characteristic of an individual, this highly heritable trait in the Ural owl is also remarkably plastic in relation to the changes in vole numbers, Ural owls are laying the largest eggs when their prey is most abundant. Timing of the onset of incubation is an individual-specific property and plastic in relation to clutch size. Timing of incubation is an important underlying cause for asynchronous hatching in birds. Asynchronous hatching is beneficial to offspring survival in Ural owl. Hence, timing of the onset of incubation may also be under natural selection. Ural owl females also adjust their nest defense aggressiveness according to the vole dynamics, being most aggressive in years when they produce the largest broods. Individual females show different levels of nest defense aggressiveness. Aggressiveness is positively correlated with the phenotypic plasticity of aggressiveness. As elevated nest defense aggressiveness is selected for, it may promote the plasticity of aggressive nest defense behaviour. All the studied traits are repeatable or heritable on individual level, and their expression is either directly or indirectly sensitive to changes in vole numbers. My work considers a number of important fitness-related traits showing phenotypic plasticity in all of them. Further, in two chapters I show that there is individual variation in the amount of plasticity exhibited. These findings on plasticity in reproduction related traits suggest that variable environments indeed promote plasticity.
Resumo:
Numerical simulations of the magnetorotational instability (MRI) with zero initial net flux in a non-stratified isothermal cubic domain are used to demonstrate the importance of magnetic boundary conditions. In fully periodic systems the level of turbulence generated by the MRI strongly decreases as the magnetic Prandtl number (Pm), which is the ratio of kinematic viscosity and magnetic diffusion, is decreased. No MRI or dynamo action below Pm=1 is found, agreeing with earlier investigations. Using vertical field conditions, which allow magnetic helicity fluxes out of the system, the MRI is found to be excited in the range 0.1