28 resultados para Environmental Microbiology and Microbial Ecology
em Helda - Digital Repository of University of Helsinki
Resumo:
The purpose of the present study was to increase understanding of the interaction of rural people and, specifically, women with the environment in a dry area in Sudan. The study that included both nomadic pastoralists and farmers aimed at answering two main research questions, namely: What kinds of roles have the local people, and the women in particular, had in land degradation in the study area and what kinds of issues would a gender-sensitive, forestry-related environmental rehabilitation intervention need to consider there? The study adopted the definition of land degradation as proposed by the United Nations Convention to Combat Desertification (UNCCD), which describes land degradation as reduction or loss the biological or economic productivity and complexity of land in arid, semi-arid and dry sub-humid areas. The Convention perceives desertification as land degradation. The dry study area in Sudan, South of the Sahara, has been the subject of land degradation or desertification discussions since the 1970s, and other studies have been also conducted to assess the degradation in the area. Nevertheless, the exact occurrence, scale and local significance of land degradation in the area is still unclear. This study explored how the rural population whose livelihood depended on the area, perceived environmental changes occurring there and compared their conceptions with other sources of information of the area such as research reports. The main fieldwork methods included interviews with open-ended questions and observation of people and the environment. The theoretical framework conceptualised the rural population as land users whose choices of environmental activities are affected by multiple factors in the social and biophysical contexts in which they live. It was emphasised that these factors have their own specific characteristics in different contexts, simultaneously recognising that there are also factors that generally affect environmental practices in various areas such as the land users' environmental literacy (conceptions of the environment), gender and livelihood needs. The people studied described that environmental changes, such as reduced vegetation cover and cropland production, had complicated the maintenance of their livelihoods in the study area. Some degraded sites were also identified through observations during the fieldwork. Whether a large-scale reduction of cropland productivity had occurred in the farmers' croplands remained, however, unclear. The study found that the environmental impact of the rural women's activities varied and was normally limited. The women's most significant environmental impact resulted from their cutting of trees, which was likely to contribute, at least in some places, to land degradation, affecting the environment together with climate and livestock. However, when a wider perspective is taken, it becomes questionable whether the women have really played roles in land degradation, since gender, poverty and the need to maintain livelihood had caused them to conduct environmentally harmful activities. The women have had, however, no power to change the causes of their activities. The findings further suggested that an inadequate availability of food was the most critical problem in the study area. Therefore, an environmental programme in the area was suggested to include technical measures to increase the productivity of croplands, opportunities for income generation and readiness to co-operate with other programmes to improve the local people's abilities to maintain their livelihoods. In order to protect the environment and alleviate the women's work burden, the introduction of fuel-saving stoves was also suggested. Furthermore, it was suggested that increased planting of trees on homesteads would be supported by an easy availability of tree seedlings. Planting trees on common property land was, however, perceived as extremely demanding in the study area, due to scarcity of such land. In addition, it became apparent that the local land users, and women in particular, needed to allocate their labour to maintain the immediate livelihood of their families and were not motivated to allocate their labour solely for environmental rehabilitation. Nonetheless, from the point of view of the existing social structures, women's active participation in a community-based environmental programme would be rather natural, particularly among the farmer women who had already formed a women's group and participated in communal decision making. Forming of a women group or groups was suggested to further support both the farmer women's and pastoral women's active participation within an environmental programme and their general empowerment. An Environmental programme would need to acknowledge that improving rural people's well-being and maintaining their livelihood in the study area requires development and co-operation with various sectors in Sudan.
Resumo:
This thesis focuses on how elevated CO2 and/or O3 affect the below-ground processes in semi-natural vegetation, with an emphasis on greenhouse gases, N cycling and microbial communities. Meadow mesocosms mimicking lowland hay meadows in Jokioinen, SW Finland, were enclosed in open-top chambers and exposed to ambient and elevated levels of O3 (40-50 ppb) and/or CO2 (+100 ppm) for three consecutive growing season, while chamberless plots were used as chamber controls. Chemical and microbiological analyses as well as laboratory incubations of the mesocosm soils under different treatments were used to study the effects of O3 and/or CO2. Artificially constructed mesocosms were also compared with natural meadows with regards to GHG fluxes and soil characteristics. In addition to research conducted at the ecosystem level (i.e. the mesocosm study), soil microbial communities were also examined in a pot experiment with monocultures of individual species. By comparing mesocosms with similar natural plant assemblage, it was possible to demonstrate that artificial mesocosms simulated natural habitats, even though some differences were found in the CH4 oxidation rate, soil mineral N, and total C and N concentrations in the soil. After three growing seasons of fumigations, the fluxes of N2O, CH4, and CO2 were decreased in the NF+O3 treatment, and the soil NH4+-N and mineral N concentrations were lower in the NF+O3 treatment than in the NF control treatment. The mesocosm soil microbial communities were affected negatively by the NF+O3 treatment, as the total, bacterial, actinobacterial, and fungal PLFA biomasses as well as the fungal:bacterial biomass ratio decreased under elevated O3. In the pot survey, O3 decreased the total, bacterial, actinobacterial, and mycorrhizal PLFA biomasses in the bulk soil and affected the microbial community structure in the rhizosphere of L. pratensis, whereas the bulk soil and rhizosphere of the other monoculture, A. capillaris, remained unaffected by O3. Elevated CO2 caused only minor and insignificant changes in the GHG fluxes, N cycling, and the microbial community structure. In the present study, the below-ground processes were modified after three years of moderate O3 enhancement. A tentative conclusion is that a decrease in N availability may have feedback effects on plant growth and competition and affect the N cycling of the whole meadow ecosystem. Ecosystem level changes occur slowly, and multiplication of the responses might be expected in the long run.
Resumo:
The research is related to the Finnish Jabal Harun Project (FJHP), which is part of the research unit directed by Professor Jaakko Frösén. The project consists of two interrelated parts: the excavation of a Byzantine monastery/pilgrimage centre on Jabal Harun, and a multiperiod archaeological survey of the surrounding landscape. It is generally held that the Near Eastern landscape has been modified by millennia of human habitation and activity. Past climatic changes and human activities could be expected to have significantly changed also the landscape of the Jabal Harun area. Therefore it was considered that a study of erosion in the Jabal Harun area could shed light on the environmental and human history of the area. It was hoped that it would be possible to connect the results of the sedimentological studies either to wider climatic changes in the Near East, or to archaeologically observable periods of human activity and land use. As evidence of some archaeological periods is completely missing from the Jabal Harun area, it was also of interest whether catastrophic erosion or unfavourable environmental change, caused either by natural forces or by human agency, could explain the gaps in the archaeological record. Changes in climate and/or land-use were expected to be reflected in the sedimentary record. The field research, carried out as part of the FJHP survey fieldwork, included the mapping of wadi terraces and cleaning of sediment profiles which were recorded and sampled for laboratory analyses of facies and lithology. To obtain a chronology for the sedimentation and erosion phases also OSL (optically stimulated luminescence) dating samples were collected. The results were compared to the record of the Near Eastern palaeoclimate, and to data from geoarchaeological studies in central and southern Jordan. The picture of the environmental development was then compared to the human history in the area, based on archaeological evidence from the FJHP survey and the published archaeological research in the Petra region, and the question of the relationship between human activity and environmental change was critically discussed. Using the palaeoclimatic data and the results from geoarchaeological studies it was possible to outline the environmental development in the Jabal Harun area from the Pleistocene to the present.It is appears that there was a phase of accumulation of sediment before the Middle Palaeolithic period, possibly related to tectonic movement. This phase was later followed by erosion, tentatively suggested to have taken place during the Upper Palaeolithic. A period of wadi aggradation probably occurred during the Late Glacial and continued until the end of the Pleistocene, followed by significant channel degradation, attributed to increased rainfall during the Early Holocene. It seems that during the later Holocene channel incision has been dominant in the Jabal Harûn area although there have been also small-scale channel aggradation phases, two of which were OSL-dated to around 4000-3000 BP and 2400-2000 BP. As there is no evidence of tectonic movements in the Jabal Harun area after the early Pleistocene, it is suggested that climate change and human activity have been the major causes of environmental change in the area. At a brief glance it seems that many of the changes in the settlement and land use in the Jabal Harun area can be explained by climatic and environmental conditions. However, the responses of human societies to environmental change are dependent on many factors. Therefore an evaluation of the significance of environmental, cultural, socio-economic and political factors is needed to decide whether certain phenomena are environmentally induced. Comparison with the wider Petra region is also needed to judge whether the phenomena are characteristic of the Jabal Harun area only, or can they be connected to social, political and economic development over a wider area.
Resumo:
Miniaturized mass spectrometric ionization techniques for environmental analysis and bioanalysis Novel miniaturized mass spectrometric ionization techniques based on atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were studied and evaluated in the analysis of environmental samples and biosamples. The three analytical systems investigated here were gas chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry (GC-µAPCI-MS) and gas chromatography-microchip atmospheric pressure photoionization-mass spectrometry (GC-µAPPI-MS), where sample pretreatment and chromatographic separation precede ionization, and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS), where the samples are analyzed either as such or after minimal pretreatment. The gas chromatography-microchip atmospheric pressure ionization-mass spectrometry (GC-µAPI-MS) instrumentations were used in the analysis of polychlorinated biphenyls (PCBs) in negative ion mode and 2-quinolinone-derived selective androgen receptor modulators (SARMs) in positive ion mode. The analytical characteristics (i.e., limits of detection, linear ranges, and repeatabilities) of the methods were evaluated with PCB standards and SARMs in urine. All methods showed good analytical characteristics and potential for quantitative environmental analysis or bioanalysis. Desorption and ionization mechanisms in DAPPI were studied. Desorption was found to be a thermal process, with the efficiency strongly depending on thermal conductivity of the sampling surface. Probably the size and polarity of the analyte also play a role. In positive ion mode, the ionization is dependent on the ionization energy and proton affinity of the analyte and the spray solvent, while in negative ion mode the ionization mechanism is determined by the electron affinity and gas-phase acidity of the analyte and the spray solvent. DAPPI-MS was tested in the fast screening analysis of environmental, food, and forensic samples, and the results demonstrated the feasibility of DAPPI-MS for rapid screening analysis of authentic samples.
Resumo:
This thesis discusses the prehistoric human disturbance during the Holocene by means of case studies using detailed high-resolution pollen analysis from lake sediment. The four lakes studied are situated between 61o 40' and 61o 50' latitudes in the Finnish Karelian inland area and vary between 2.4 and 28.8 ha in size. The existence of Early Metal Age population was one important question. Another study question concerned the development of grazing, and the relationship between slash-and-burn cultivation and permanent field cultivation. The results were presented as pollen percentages and pollen concentrations (grains cm 3). Accumulation values (grains cm 2 yr 1) were calculated for Lake Nautajärvi and Lake Orijärvi sediment, where the sediment accumulation rate was precisely determined. Sediment properties were determined using loss-on-ignition (LOI) and magnetic susceptibility (k). Dating methods used include both conventional and AMS 14C determinations, paleomagnetic dating and varve choronology. The isolation of Lake Kirjavalampi on the northern shore of Lake Ladoga took place ca. 1460 1300 BC. The long sediment cores from Finland, Lake Kirkkolampi and Lake Orijärvi in southeastern Finland and Lake Nautajärvi in south central Finland all extended back to the Early Holocene and were isolated from the Baltic basin ca. 9600 BC, 8600 BC and 7675 BC, respectively. In the long sediment cores, the expansion of Alnus was visible between 7200 - 6840 BC. The spread of Tilia was dated in Lake Kirkkolampi to 6600 BC, in Lake Orijärvi to 5000 BC and at Lake Nautajärvi to 4600 BC. Picea is present locally in Lake Kirkkolampi from 4340 BC, in Lake Orijärvi from 6520 BC and in Lake Nautajärvi from 3500 BC onwards. The first modifications in the pollen data, apparently connected to anthropogenic impacts, were dated to the beginning of the Early Metal Period, 1880 1600 BC. Anthropogenic activity became clear in all the study sites by the end of the Early Metal Period, between 500 BC AD 300. According to Secale pollen, slash-and-burn cultivation was practised around the eastern study lakes from AD 300 600 onwards, and at the study site in central Finland from AD 880 onwards. The overall human impact, however, remained low in the studied sites until the Late Iron Age. Increasing human activity, including an increase in fire frequency was detected from AD 800 900 onwards in the study sites in eastern Finland. In Lake Kirkkolampi, this included cultivation on permanent fields, but in Lake Orijärvi, permanent field cultivation became visible as late as AD 1220, even when the macrofossil data demonstrated the onset of cultivation on permanent fields as early as the 7th century AD. On the northern shore of Lake Ladoga, local activity became visible from ca. AD 1260 onwards and at Lake Nautajärvi, sediment the local occupation was traceable from 1420 AD onwards. The highest values of Secale pollen were recorded both in Lake Orijärvi and Lake Kirjavalampi between ca. AD 1700 1900, and could be associated with the most intensive period of slash-and-burn from AD 1750 to 1850 in eastern Finland.
Resumo:
The Taita Hills in southeastern Kenya form the northernmost part of Africa’s Eastern Arc Mountains, which have been identified by Conservation International as one of the top ten biodiversity hotspots on Earth. As with many areas of the developing world, over recent decades the Taita Hills have experienced significant population growth leading to associated major changes in land use and land cover (LULC), as well as escalating land degradation, particularly soil erosion. Multi-temporal medium resolution multispectral optical satellite data, such as imagery from the SPOT HRV, HRVIR, and HRG sensors, provides a valuable source of information for environmental monitoring and modelling at a landscape level at local and regional scales. However, utilization of multi-temporal SPOT data in quantitative remote sensing studies requires the removal of atmospheric effects and the derivation of surface reflectance factor. Furthermore, for areas of rugged terrain, such as the Taita Hills, topographic correction is necessary to derive comparable reflectance throughout a SPOT scene. Reliable monitoring of LULC change over time and modelling of land degradation and human population distribution and abundance are of crucial importance to sustainable development, natural resource management, biodiversity conservation, and understanding and mitigating climate change and its impacts. The main purpose of this thesis was to develop and validate enhanced processing of SPOT satellite imagery for use in environmental monitoring and modelling at a landscape level, in regions of the developing world with limited ancillary data availability. The Taita Hills formed the application study site, whilst the Helsinki metropolitan region was used as a control site for validation and assessment of the applied atmospheric correction techniques, where multiangular reflectance field measurements were taken and where horizontal visibility meteorological data concurrent with image acquisition were available. The proposed historical empirical line method (HELM) for absolute atmospheric correction was found to be the only applied technique that could derive surface reflectance factor within an RMSE of < 0.02 ps in the SPOT visible and near-infrared bands; an accuracy level identified as a benchmark for successful atmospheric correction. A multi-scale segmentation/object relationship modelling (MSS/ORM) approach was applied to map LULC in the Taita Hills from the multi-temporal SPOT imagery. This object-based procedure was shown to derive significant improvements over a uni-scale maximum-likelihood technique. The derived LULC data was used in combination with low cost GIS geospatial layers describing elevation, rainfall and soil type, to model degradation in the Taita Hills in the form of potential soil loss, utilizing the simple universal soil loss equation (USLE). Furthermore, human population distribution and abundance were modelled with satisfactory results using only SPOT and GIS derived data and non-Gaussian predictive modelling techniques. The SPOT derived LULC data was found to be unnecessary as a predictor because the first and second order image texture measurements had greater power to explain variation in dwelling unit occurrence and abundance. The ability of the procedures to be implemented locally in the developing world using low-cost or freely available data and software was considered. The techniques discussed in this thesis are considered equally applicable to other medium- and high-resolution optical satellite imagery, as well the utilized SPOT data.
Resumo:
The Baltic Sea is a geologically young, large brackish water basin, and few of the species living there have fully adapted to its special conditions. Many of the species live on the edge of their distribution range in terms of one or more environmental variables such as salinity or temperature. Environmental fluctuations are know to cause fluctuations in populations abundance, and this effect is especially strong near the edges of the distribution range, where even small changes in an environmental variable can be critical to the success of a species. This thesis examines which environmental factors are the most important in relation to the success of various commercially exploited fish species in the northern Baltic Sea. It also examines the uncertainties related to fish stocks current and potential status as well as to their relationship with their environment. The aim is to quantify the uncertainties related to fisheries and environmental management, to find potential management strategies that can be used to reduce uncertainty in management results and to develop methodology related to uncertainty estimation in natural resources management. Bayesian statistical methods are utilized due to their ability to treat uncertainty explicitly in all parts of the statistical model. The results show that uncertainty about important parameters of even the most intensively studied fish species such as salmon (Salmo salar L.) and Baltic herring (Clupea harengus membras L.) is large. On the other hand, management approaches that reduce uncertainty can be found. These include utilising information about ecological similarity of fish stocks and species, and using management variables that are directly related to stock parameters that can be measured easily and without extrapolations or assumptions.
Resumo:
Hostility is a multidimensional construct having wide effects on society. In its different forms, hostility is related to a large array of social and health problems, such as criminality, substance abuse, depression, and cardiovascular risks. Identifying and tackling early-life factors that contribute to hostility may have public health significance. Although the variance in hostility is estimated to be 18-50 percent heritable, there are significant gaps in knowledge regarding the molecular genetics of hostility. It is known that a cold and unsupportive home atmosphere in childhood predicts a child s later hostility. However, the long-term effects of care-giving quality on hostility in adulthood and the role of genes in this association are unclear. The present dissertation is part of the ongoing population-based prospective Young Finns study, which commenced in 1980 with 3596 3-18-year-old boys and girls who were followed for 27 years. The specific aims of the dissertation were first to study the antecedents of hostility by looking at 1) the genetic background, 2) the early environmental predictors, and 3) the gene environment interplay behind hostility. As a second aim, the thesis endeavored to examine 4) the association between hostility and cardiovascular risks, and 5) the moderating effect of demographic factors, such as gender and socioeconomic status, on this association. The study found potential gene polymorphisms from chromosomes 7, 14, 17, and 22 suggestively associated with hostility. Of early environmental influences, breastfeeding and early care-giving were found to predict hostility in adulthood. In addition, a serotonin receptor 2A polymorphism rs6313 moderated the effect of early care-giving on later hostile attitudes. Furthermore, hostility was shown to predict cardiovascular risks, such as metabolic syndrome and inflammation. Finally, parental socioeconomic status was found to moderate the association between anger and early atherosclerosis. The new genetic and early environmental antecedents of hostility identified in this research may help in understanding the development of hostility and its health risks, and in planning appropriate prevention. The significance of early influences on this development is stressed. Although the markers studied are individual- and family-related factors, these may be influenced at the societal level by giving accurate information to all individuals concerned and by improving the societal circumstances.
Resumo:
Composting refers to aerobic degradation of organic material and is one of the main waste treatment methods used in Finland for treating separated organic waste. The composting process allows converting organic waste to a humus-like end product which can be used to increase the organic matter in agricultural soils, in gardening, or in landscaping. Microbes play a key role as degraders during the composting-process, and the microbiology of composting has been studied for decades, but there are still open questions regarding the microbiota in industrial composting processes. It is known that with the traditional, culturing-based methods only a small fraction, below 1%, of the species in a sample is normally detected. In recent years an immense diversity of bacteria, fungi and archaea has been found to occupy many different environments. Therefore the methods of characterising microbes constantly need to be developed further. In this thesis the presence of fungi and bacteria in full-scale and pilot-scale composting processes was characterised with cloning and sequencing. Several clone libraries were constructed and altogether nearly 6000 clones were sequenced. The microbial communities detected in this study were found to differ from the compost microbes observed in previous research with cultivation based methods or with molecular methods from processes of smaller scale, although there were similarities as well. The bacterial diversity was high. Based on the non-parametric coverage estimations, the number of bacterial operational taxonomic units (OTU) in certain stages of composting was over 500. Sequences similar to Lactobacillus and Acetobacteria were frequently detected in the early stages of drum composting. In tunnel stages of composting the bacterial community comprised of Bacillus, Thermoactinomyces, Actinobacteria and Lactobacillus. The fungal diversity was found to be high and phylotypes similar to yeasts were abundantly found in the full-scale drum and tunnel processes. In addition to phylotypes similar to Candida, Pichia and Geotrichum moulds from genus Thermomyces and Penicillium were observed in tunnel stages of composting. Zygomycetes were detected in the pilot-scale composting processes and in the compost piles. In some of the samples there were a few abundant phylotypes present in the clone libraries that masked the rare ones. The rare phylotypes were of interest and a method for collecting them from clone libraries for sequencing was developed. With negative selection of the abundant phylotyps the rare ones were picked from the clone libraries. Thus 41% of the clones in the studied clone libraries were sequenced. Since microbes play a central role in composting and in many other biotechnological processes, rapid methods for characterization of microbial diversity would be of value, both scientifically and commercially. Current methods, however, lack sensitivity and specificity and are therefore under development. Microarrays have been used in microbial ecology for a decade to study the presence or absence of certain microbes of interest in a multiplex manner. The sequence database collected in this thesis was used as basis for probe design and microarray development. The enzyme assisted detection method, ligation-detection-reaction (LDR) based microarray, was adapted for species-level detection of microbes characteristic of each stage of the composting process. With the use of a specially designed control probe it was established that a species specific probe can detect target DNA representing as little as 0.04% of total DNA in a sample. The developed microarray can be used to monitor composting processes or the hygienisation of the compost end product. A large compost microbe sequence dataset was collected and analysed in this thesis. The results provide valuable information on microbial community composition during industrial scale composting processes. The microarray method was developed based on the sequence database collected in this study. The method can be utilised in following the fate of interesting microbes during composting process in an extremely sensitive and specific manner. The platform for the microarray is universal and the method can easily be adapted for studying microbes from environments other than compost.
Resumo:
The impacts of fragmentation and recreational use on the hemiboreal urban forest understorey vegetation and the microbial community of the humus layer (the phospholipid fatty acid (PLFA) pattern, microbial biomass and microbial activity, measured as basal respiration) were examined in the greater Helsinki area, southern Finland. Trampling tolerance of 1) herb-rich OMT, 2) mesic MT, and 3) sub-xeric VT forests (in decreasing order of fertility) was studied by comparing relative understorey vegetation cover (urban/untrampled reference ratio) of the three forest types. The trampling tolerance of forest vegetation increased with the productivity of the site (sub-xeric < mesic < herb-rich). Wear of understorey vegetation correlated positively with the number of residents (i.e., recreational pressure) around the forest patch. An increase of 15000 residents within a radius of 1 km around a forest patch was associated with ca. 30% decrease in the relative understorey vegetation cover. The cover of dwarf shrub Vaccinium myrtillus in particular decreased with increasing levels of wear. The cover of mosses in urban forests was less than half of that in untrampled reference areas. Cover of tree saplings, mainly Sorbus aucuparia, and some resilient herbs was higher than in the reference areas. In small urban forest fragments, broad-leaved trees, grasses and herbs were more abundant and mosses were scarcer than in larger urban forest areas. Thus, due to trampling and edge effects, resilient herb and grass species are replacing sensitive dwarf shrubs, mosses and lichens in urban forests. Differences in the soil microbial community structure were found between paths and untrampled areas and the effects of paths extended more than one meter from the paths. Paths supported approximately 25-30% higher microbial biomass with a transition zone of at least 1 m from the path edge. However, microbial activity per unit of biomass was lower on paths than in untrampled areas. Furthermore, microbial biomass and activity were 30-45% lower at the first 20 m into the forest fragments, due to low moisture content of humus near the edge. The decreased microbial activity detected at forest edges and paths implies decreased litter decomposition rates, and thus, a change in nutrient cycling. Changes in the decomposition and nutrient supply may in turn affect the diversity and function of plant communities in urban forests. Keywords: boreal forest vegetation, edge effects, phospholipid fatty acids, trampling, urban woodlands, wear
Resumo:
While environmental variation is an ubiquitous phenomenon in the natural world which has for long been appreciated by the scientific community recent changes in global climatic conditions have begun to raise consciousness about the economical, political and sociological ramifications of global climate change. Climate warming has already resulted in documented changes in ecosystem functioning, with direct repercussions on ecosystem services. While predicting the influence of ecosystem changes on vital ecosystem services can be extremely difficult, knowledge of the organisation of ecological interactions within natural communities can help us better understand climate driven changes in ecosystems. The role of environmental variation as an agent mediating population extinctions is likely to become increasingly important in the future. In previous studies population extinction risk in stochastic environmental conditions has been tied to an interaction between population density dependence and the temporal autocorrelation of environmental fluctuations. When populations interact with each other, forming ecological communities, the response of such species assemblages to environmental stochasticity can depend, e.g., on trophic structure in the food web and the similarity in species-specific responses to environmental conditions. The results presented in this thesis indicate that variation in the correlation structure between species-specific environmental responses (environmental correlation) can have important qualitative and quantitative effects on community persistence and biomass stability in autocorrelated (coloured) environments. In addition, reddened environmental stochasticity and ecological drift processes (such as demographic stochasticity and dispersal limitation) have important implications for patterns in species relative abundances and community dynamics over time and space. Our understanding of patterns in biodiversity at local and global scale can be enhanced by considering the relevance of different drift processes for community organisation and dynamics. Although the results laid out in this thesis are based on mathematical simulation models, they can be valuable in planning effective empirical studies as well as in interpreting existing empirical results. Most of the metrics considered here are directly applicable to empirical data.
Resumo:
Lead contamination in the environment is of particular concern, as it is a known toxin. Until recently, however, much less attention has been given to the local contamination caused by activities at shooting ranges compared to large-scale industrial contamination. In Finland, more than 500 tons of Pb is produced each year for shotgun ammunition. The contaminant threatens various organisms, ground water and the health of human populations. However, the forest at shooting ranges usually shows no visible sign of stress compared to nearby clean environments. The aboveground biota normally reflects the belowground ecosystem. Thus, the soil microbial communities appear to bear strong resistance to contamination, despite the influence of lead. The studies forming this thesis investigated a shooting range site at Hälvälä in Southern Finland, which is heavily contaminated by lead pellets. Previously it was experimentally shown that the growth of grasses and degradation of litter are retarded. Measurements of acute toxicity of the contaminated soil or soil extracts gave conflicting results, as enchytraeid worms used as toxicity reporters were strongly affected, while reporter bacteria showed no or very minor decreases in viability. Measurements using sensitive inducible luminescent reporter bacteria suggested that the bioavailability of lead in the soil is indeed low, and this notion was supported by the very low water extractability of the lead. Nevertheless, the frequency of lead-resistant cultivable bacteria was elevated based on the isolation of cultivable strains. The bacterial and fungal diversity in heavily lead contaminated shooting sectors were compared with those of pristine sections of the shooting range area. The bacterial 16S rRNA gene and fungal ITS rRNA gene were amplified, cloned and sequenced using total DNA extracted from the soil humus layer as the template. Altogether, 917 sequenced bacterial clones and 649 sequenced fungal clones revealed a high soil microbial diversity. No effect of lead contamination was found on bacterial richness or diversity, while fungal richness and diversity significantly differed between lead contaminated and clean control areas. However, even in the case of fungi, genera that were deemed sensitive were not totally absent from the contaminated area: only their relative frequency was significantly reduced. Some operational taxonomic units (OTUs) assigned to Basidiomycota were clearly affected, and were much rarer in the lead contaminated areas. The studies of this thesis surveyed EcM sporocarps, analyzed morphotyped EcM root tips by direct sequencing, and 454-pyrosequenced fungal communities in in-growth bags. A total of 32 EcM fungi that formed conspicuous sporocarps, 27 EcM fungal OTUs from 294 root tips, and 116 EcM fungal OTUs from a total of 8 194 ITS2 454 sequences were recorded. The ordination analyses by non-parametric multidimensional scaling (NMS) indicated that Pb enrichment induced a shift in the EcM community composition. This was visible as indicative trends in the sporocarp and root tip datasets, but explicitly clear in the communities observed in the in-growth bags. The compositional shift in the EcM community was mainly attributable to an increase in the frequencies of OTUs assigned to the genus Thelephora, and to a decrease in the OTUs assigned to Pseudotomentella, Suillus and Tylospora in Pb-contaminated areas when compared to the control. The enrichment of Thelephora in contaminated areas was also observed when examining the total fungal communities in soil using DNA cloning and sequencing technology. While the compositional shifts are clear, their functional consequences for the dominant trees or soil ecosystem remain undetermined. The results indicate that at the Hälvälä shooting range, lead influences the fungal communities but not the bacterial communities. The forest ecosystem shows apparent functional redundancy, since no significant effects were seen on forest trees. Recently, by means of 454 pyrosequencing , the amount of sequences in a single analysis run can be up to one million. It has been applied in microbial ecology studies to characterize microbial communities. The handling of sequence data with traditional programs is becoming difficult and exceedingly time consuming, and novel tools are needed to handle the vast amounts of data being generated. The field of microbial ecology has recently benefited from the availability of a number of tools for describing and comparing microbial communities using robust statistical methods. However, although these programs provide methods for rapid calculation, it has become necessary to make them more amenable to larger datasets and numbers of samples from pyrosequencing. As part of this thesis, a new program was developed, MuSSA (Multi-Sample Sequence Analyser), to handle sequence data from novel high-throughput sequencing approaches in microbial community analyses. The greatest advantage of the program is that large volumes of sequence data can be manipulated, and general OTU series with a frequency value can be calculated among a large number of samples.
Resumo:
Fish farming introduces nutrients, microbes and a wide variety of chemicals such as heavy metals, antifoulants and antibiotics to the surrounding environment. Introduction of antibiotics has been linked with the increased incidence of antibiotic resistant pathogenic bacteria in the farm vicinities. In this thesis molecular methods such as quantitative PCR and DNA sequencing were applied to analyze bacterial communities in sediments from fish farms and pristine locations. Altogether four farms and four pristine sites were sampled in the Baltic Sea. Two farm and two pristine locations were sampled over a surveillance period of four years. Furthermore, a new methodology was developed as a part of the study that permits amplifying single microbial genomes and capturing them according to any genetic traits, including antibiotic resistance genes. The study revealed that several resistance genes for tetracycline were found at the sediment underneath the aquaculture farms. The copy number of these genes remained elevated even at a farm that had not used any antibiotics since year 2000, six years before this study started. Similarly, an increase in the amount of mercury resistance gene merA was observed at the aquaculture sediment. The persistence of the resistance genes in absence of any selection pressure from antibiotics or heavy metals suggests that the genes may be introduced to the sediment by the farming process. This is also supported by the diversity pattern of the merA gene between farm and pristine sediments. The bacterial community-level changes in response to fish farming were very complex and no single phylogenetic groups were found that would be typical to fish farm sediments. However, the community structures had some correlation with the exposure to fish farming. Our studies suggest that the established approaches to deal with antibiotic resistance at the aquaculture, such as antibiotic cycling, are fundamentally flawed because they cannot prevent the introduction of the resistance genes and resistant bacteria to the farm area by the farming process. Further studies are required to study the entire fish farming process to identify the sources of the resistance genes and the resistant bacteria. The results also suggest that in order to prevent major microbiological changes in the surrounding aquatic environment, the farms should not be founded in shallow water where currents do not transport sedimenting matter from the farms. Finally, the technique to amplify and select microbial genomes will potentially have a considerable impact in microbial ecology and genomics.