17 resultados para Energy-dense diet
em Helda - Digital Repository of University of Helsinki
Resumo:
In post-industrialised societies, food is more plentiful, accessible and palatable than ever before and technological development has reduced the need for physical activity. Consequently, the prevalence of obesity is increasing, which is problematic as obesity is related to a number of diseases. Various psychological and social factors have an important influence on dietary habits and the development of obesity in the current food-rich and sedentary environments. The present study concentrates on the associations of emotional and cognitive factors with dietary intake and obesity as well as on the role these factors play in socioeconomic disparities in diet. Many people cognitively restrict their food intake to prevent weight gain or to lose weight, but research on whether restrained eating is a useful weight control strategy has produced conflicting findings. With respect to emotional factors, the evidence is accumulating that depressive symptoms are related to less healthy dietary intake and obesity, but the mechanisms explaining these associations remain unclear. Furthermore, it is not fully understood why socioeconomically disadvantaged individuals tend to have unhealthier dietary habits and the motives underlying food choices (e.g., price and health) could be relevant in this respect. The specific aims of the study were to examine 1) whether obesity status and dieting history moderate the associations of restrained eating with overeating tendencies, self-control and obesity indicators; 2) whether the associations of depressive symptoms with unhealthier dietary intake and obesity are attributable to a tendency for emotional eating and a low level of physical activity self-efficacy; and 3) whether the absolute or relative importance of food choice motives (health, pleasure, convenience, price, familiarity and ethicality) contribute to the socioeconomic disparities in dietary habits. The study was based on a large population-based sample of Finnish adults: the participants were men (N=2325) and women (N=2699) aged 25-74 who took part in the DILGOM (Dietary, Lifestyle and Genetic Determinants of Obesity and Metabolic Syndrome) sub-study of the National FINRISK Study 2007. The participants weight, height, waist circumference and body fat percentage were measured in a health examination. Psychological eating styles (the Three-Factor Eating Questionnaire-R18), food choice motives (a shortened version of the Food Choice Questionnaire), depressive symptoms (the Center for Epidemiological Studies Depression Scale) and self-control (the Brief Self-Control Scale) were measured with pre-existing questionnaires. A validated food frequency questionnaire was used to assess the average consumption of sweet and non-sweet energy-dense foods and vegetables/fruit. Self-reported total years of education and gross household income were used as indicators of socioeconomic position. The results indicated that 1) restrained eating was related to a lower body mass index, waist circumference, emotional eating and uncontrolled eating, and to a higher self-control in obese participants and current/past dieters. In contrast, the associations were the opposite in normal weight individuals and those who had never dieted. Thus, restrained eating may be related to better weight control among obese individuals and those with dieting experiences, while among others it may function as an indicator of problems with eating and an attempt to solve them. 2) Emotional eating and depressive symptoms were both related to less healthy dietary intake, and the greater consumption of energy-dense sweet foods among participants with elevated depressive symptoms was attributable to the susceptibility for emotional eating. In addition, emotional eating and physical activity self-efficacy were both important in explaining the positive association between depressive symptoms and obesity. 3) The lower vegetable/fruit intake and higher energy-dense food intake among individuals with a low socioeconomic position were partly explained by the higher priority they placed on price and familiarity and the lower priority they gave to health motives in their daily food choices. In conclusion, although policy interventions to change the obesogenic nature of the current environment are definitely needed, knowledge of the factors that hinder or facilitate people s ability to cope with the food-rich environment is also necessary. This study implies that more emphasis should be placed on various psychological and social factors in weight control programmes and interventions.
Resumo:
Diet high in dairy products is inversely associated with body mass index, risk of metabolic syndrome and prevalence of type 2 diabetes in several populations. Also a number of intervention studies support the role of increased dairy intake in the prevention and treatment of obesity. Dairy calcium has been suggested to account for the effect of dairy on body weight, but it has been repeatedly shown that the effect of dairy is superior to the effect of supplemental calcium. Dairy proteins are postulated to either enhance the effect of calcium or have an independent effect on body weight, but studies in the area are scarce. The aim of this study was to evaluate the potential of dairy proteins and calcium in the prevention and treatment of diet-induced obesity in C57Bl/6J mice. The effect of dairy proteins and calcium on the liver and adipose tissue was also investigated in order to characterise the potential mechanisms explaining the reduction of risk for metabolic syndrome and type 2 diabetes. A high-calcium diet (1.8%) in combination with dietary whey protein inhibited body weight and fat gain and accelerated body weight and fat loss in high-fat-fed C57Bl/6J mice during long-term studies of 14 to 21 weeks. α-lactalbumin, one of the major whey proteins, was the most effective whey protein fraction showing significantly accelerated weight and fat loss during energy restriction and reduced the amount of visceral fat gain during ad libitum feeding after weight loss. The microarray data suggest sensitisation of insulin signalling in the adipose tissue as a result of a calcium-rich whey protein diet. Lipidomic analysis revealed that weight loss on whey protein-based high-calcium diet was characterised by significant decreases in diabetogenic diacylglycerols and lipotoxic ceramide species. The calcium supplementation led to a small, but statistically significant decrease in fat absorption independent of the protein source of the diet. This augments, but does not fully explain the effects of the studied diets on body weight. A whey protein-containing high-calcium diet had a protective effect against a high-fat diet-induced decline of β3 adrenergic receptor expression in adipose tissue. In addition, a high-calcium diet with whey protein increased the adipose tissue leptin expression which is decreased in this obesity-prone mouse strain. These changes are likely to contribute to the inhibition of weight gain. The potential sensitisation of insulin signalling in adipose tissue together with the less lipotoxic and diabetogenic hepatic lipid profile suggest a novel mechanistic link to explain why increased dairy intake is associated with a lower prevalence of metabolic syndrome and type 2 diabetes in epidemiological studies. Taken together, the intake of a high-calcium diet with dairy proteins has a body weight lowering effect in high-fat-fed C57Bl/6J mice. High-calcium diets containing whey protein prevent weight gain and enhance weight loss, α-lactalbumin being the most effective whey protein fraction. Whey proteins and calcium have also beneficial effects on hepatic lipid profile and adipose tissue gene expression, which suggest a novel mechanistic link to explain the epidemiological findings on dairy intake and metabolic syndrome. The clinical relevance of these findings and the precise mechanisms of action remain an intriguing field of future research.
Resumo:
Sleep is governed by a homeostatic process in which the duration and quality of previous wake regulate the subsequent sleep. Active wakefulness is characterized with high frequency cortical oscillations and depends on stimulating influence of the arousal systems, such as the cholinergic basal forebrain (BF), while cessation of the activity in the arousal systems is required for slow wave sleep (SWS) to occur. The site-specific accumulation of adenosine (a by-product of ATP breakdown) in the BF during prolonged waking /sleep deprivation (SD) is known to induce sleep, thus coupling energy demand to sleep promotion. The adenosine release in the BF is accompanied with increases in extracellular lactate and nitric oxide (NO) levels. This thesis was aimed at further understanding the cellular processes by which the BF is involved in sleep-wake regulation and how these processes are affected by aging. The BF function was studied simultaneously at three levels of organization: 1) locally at a cellular level by measuring energy metabolites 2) globally at a cortical level (the out-put area of the BF) by measuring EEG oscillations and 3) at a behavioral level by studying changes in vigilance states. Study I showed that wake-promoting BF activation, particularly with glutamate receptor agonist N-methyl-D-aspatate (NMDA), increased extracellular adenosine and lactate levels and led to a homeostatic increase in the subsequent sleep. Blocking NMDA activation during SD reduced the high frequency (HF) EEG theta (7-9 Hz) power and attenuated the subsequent sleep. In aging, activation of the BF during SD or experimentally with NMDA (studies III, IV), did not induce lactate or adenosine release and the increases in the HF EEG theta power during SD and SWS during the subsequent sleep were attenuated as compared to the young. These findings implicate that increased or continuous BF activity is important for active wake maintenance during SD as well as for the generation of homeostatic sleep pressure, and that in aging these mechanisms are impaired. Study II found that induction of the inducible NO synthase (iNOS) during SD is accompanied with activation of the AMP-activated protein kinase (AMPK) in the BF. Because decreased cellular energy charge is the most common cause for AMPK activation, this finding implicates that the BF is selectively sensitive to the metabolic demands of SD as increases were not found in the cortex. In aging (study III), iNOS expression and extracellular levels of NO and adenosine were not significantly increased during SD in the BF. Furthermore, infusion of NO donor into the BF did not lead to sleep promotion as it did in the young. These findings indicated that the NO (and adenosine) mediated sleep induction is impaired in aging and that it could at least partly be due to the reduced sensitivity of the BF to sleep-inducing factors. Taken together, these findings show that reduced sleep promotion by the BF contributes to the attenuated homeostatic sleep response in aging.
Resumo:
Sleep deprivation leads to increased subsequent sleep length and depth and to deficits in cognitive performance in humans. In animals extreme sleep deprivation is eventually fatal. The cellular and molecular mechanisms causing the symptoms of sleep deprivation are unclear. This thesis was inspired by the hypothesis that during wakefulness brain energy stores would be depleted, and they would be replenished during sleep. The aim of this thesis was to elucidate the energy metabolic processes taking place in the brain during sleep deprivation. Endogenous brain energy metabolite levels were assessed in vivo in rats and in humans in four separate studies (Studies I-IV). In the first part (Study I) the effects of local energy depletion on brain energy metabolism and sleep were studied in rats with the use of in vivo microdialysis combined with high performance liquid chromatography. Energy depletion induced by 2,4-dinitrophenol infusion into the basal forebrain was comparable to the effects of sleep deprivation: both increased extracellular concentrations of adenosine, lactate, and pyruvate, and elevated subsequent sleep. This result supports the hypothesis of a connection between brain energy metabolism and sleep. The second part involved healthy human subjects (Studies II-IV). Study II aimed to assess the feasibility of applying proton magnetic resonance spectroscopy (1H MRS) to study brain lactate levels during cognitive stimulation. Cognitive stimulation induced an increase in lactate levels in the left inferior frontal gyrus, showing that metabolic imaging of neuronal activity related to cognition is possible with 1H MRS. Study III examined the effects of sleep deprivation and aging on the brain lactate response to cognitive stimulation. No physiologic, cognitive stimulation-induced lactate response appeared in the sleep-deprived and in the aging subjects, which can be interpreted as a sign of malfunctioning of brain energy metabolism. This malfunctioning may contribute to the functional impairment of the frontal cortex both during aging and sleep deprivation. Finally (Study IV), 1H MRS major metabolite levels in the occipital cortex were assessed during sleep deprivation and during photic stimulation. N-acetyl-aspartate (NAA/H2O) decreased during sleep deprivation, supporting the hypothesis of sleep deprivation-induced disturbance in brain energy metabolism. Choline containing compounds (Cho/H2O) decreased during sleep deprivation and recovered to alert levels during photic stimulation, pointing towards changes in membrane metabolism, and giving support to earlier observations of altered brain response to stimulation during sleep deprivation. Based on these findings, it can be concluded that sleep deprivation alters brain energy metabolism. However, the effects of sleep deprivation on brain energy metabolism may vary from one brain area to another. Although an effect of sleep deprivation might not in all cases be detectable in the non-stimulated baseline state, a challenge imposed by cognitive or photic stimulation can reveal significant changes. It can be hypothesized that brain energy metabolism during sleep deprivation is more vulnerable than in the alert state. Changes in brain energy metabolism may participate in the homeostatic regulation of sleep and contribute to the deficits in cognitive performance during sleep deprivation.
Resumo:
Type 2 diabetes is an increasing, serious, and costly public health problem. The increase in the prevalence of the disease can mainly be attributed to changing lifestyles leading to physical inactivity, overweight, and obesity. These lifestyle-related risk factors offer also a possibility for preventive interventions. Until recently, proper evidence regarding the prevention of type 2 diabetes has been virtually missing. To be cost-effective, intensive interventions to prevent type 2 diabetes should be directed to people at an increased risk of the disease. The aim of this series of studies was to investigate whether type 2 diabetes can be prevented by lifestyle intervention in high-risk individuals, and to develop a practical method to identify individuals who are at high risk of type 2 diabetes and would benefit from such an intervention. To study the effect of lifestyle intervention on diabetes risk, we recruited 522 volunteer, middle-aged (aged 40 - 64 at baseline), overweight (body mass index > 25 kg/m2) men (n = 172) and women (n = 350) with impaired glucose tolerance to the Diabetes Prevention Study (DPS). The participants were randomly allocated either to the intensive lifestyle intervention group or the control group. The control group received general dietary and exercise advice at baseline, and had annual physician's examination. The participants in the intervention group received, in addition, individualised dietary counselling by a nutritionist. They were also offered circuit-type resistance training sessions and were advised to increase overall physical activity. The intervention goals were to reduce body weight (5% or more reduction from baseline weight), limit dietary fat (< 30% of total energy consumed) and saturated fat (< 10% of total energy consumed), and to increase dietary fibre intake (15 g / 1000 kcal or more) and physical activity (≥ 30 minutes/day). Diabetes status was assessed annually by a repeated 75 g oral glucose tolerance testing. First analysis on end-points was completed after a mean follow-up of 3.2 years, and the intervention phase was terminated after a mean duration of 3.9 years. After that, the study participants continued to visit the study clinics for the annual examinations, for a mean of 3 years. The intervention group showed significantly greater improvement in each intervention goal. After 1 and 3 years, mean weight reductions were 4.5 and 3.5 kg in the intervention group and 1.0 kg and 0.9 kg in the control group. Cardiovascular risk factors improved more in the intervention group. After a mean follow-up of 3.2 years, the risk of diabetes was reduced by 58% in the intervention group compared with the control group. The reduction in the incidence of diabetes was directly associated with achieved lifestyle goals. Furthermore, those who consumed moderate-fat, high-fibre diet achieved the largest weight reduction and, even after adjustment for weight reduction, the lowest diabetes risk during the intervention period. After discontinuation of the counselling, the differences in lifestyle variables between the groups still remained favourable for the intervention group. During the post-intervention follow-up period of 3 years, the risk of diabetes was still 36% lower among the former intervention group participants, compared with the former control group participants. To develop a simple screening tool to identify individuals who are at high risk of type 2 diabetes, follow-up data of two population-based cohorts of 35-64 year old men and women was used. The National FINRISK Study 1987 cohort (model development data) included 4435 subjects, with 182 new drug-treated cases of diabetes identified during ten years, and the FINRISK Study 1992 cohort (model validation data) included 4615 subjects, with 67 new cases of drug-treated diabetes during five years, ascertained using the Social Insurance Institution's Drug register. Baseline age, body mass index, waist circumference, history of antihypertensive drug treatment and high blood glucose, physical activity and daily consumption of fruits, berries or vegetables were selected into the risk score as categorical variables. In the 1987 cohort the optimal cut-off point of the risk score identified 78% of those who got diabetes during the follow-up (= sensitivity of the test) and 77% of those who remained free of diabetes (= specificity of the test). In the 1992 cohort the risk score performed equally well. The final Finnish Diabetes Risk Score (FINDRISC) form includes, in addition to the predictors of the model, a question about family history of diabetes and the age category of over 64 years. When applied to the DPS population, the baseline FINDRISC value was associated with diabetes risk among the control group participants only, indicating that the intensive lifestyle intervention given to the intervention group participants abolished the diabetes risk associated with baseline risk factors. In conclusion, the intensive lifestyle intervention produced long-term beneficial changes in diet, physical activity, body weight, and cardiovascular risk factors, and reduced diabetes risk. Furthermore, the effects of the intervention were sustained after the intervention was discontinued. The FINDRISC proved to be a simple, fast, inexpensive, non-invasive, and reliable tool to identify individuals at high risk of type 2 diabetes. The use of FINDRISC to identify high-risk subjects, followed by lifestyle intervention, provides a feasible scheme in preventing type 2 diabetes, which could be implemented in the primary health care system.
Resumo:
Forest management is facing new challenges under climate change. By adjusting thinning regimes, conventional forest management can be adapted to various objectives of utilization of forest resources, such as wood quality, forest bioenergy, and carbon sequestration. This thesis aims to develop and apply a simulation-optimization system as a tool for an interdisciplinary understanding of the interactions between wood science, forest ecology, and forest economics. In this thesis, the OptiFor software was developed for forest resources management. The OptiFor simulation-optimization system integrated the process-based growth model PipeQual, wood quality models, biomass production and carbon emission models, as well as energy wood and commercial logging models into a single optimization model. Osyczka s direct and random search algorithm was employed to identify optimal values for a set of decision variables. The numerical studies in this thesis broadened our current knowledge and understanding of the relationships between wood science, forest ecology, and forest economics. The results for timber production show that optimal thinning regimes depend on site quality and initial stand characteristics. Taking wood properties into account, our results show that increasing the intensity of thinning resulted in lower wood density and shorter fibers. The addition of nutrients accelerated volume growth, but lowered wood quality for Norway spruce. Integrating energy wood harvesting into conventional forest management showed that conventional forest management without energy wood harvesting was still superior in sparse stands of Scots pine. Energy wood from pre-commercial thinning turned out to be optimal for dense stands. When carbon balance is taken into account, our results show that changing carbon assessment methods leads to very different optimal thinning regimes and average carbon stocks. Raising the carbon price resulted in longer rotations and a higher mean annual increment, as well as a significantly higher average carbon stock over the rotation.
Resumo:
The aim of this study was to compare the differences between forest management incorporating energy wood thinning and forest management based on silvicultural recommendations (baseline). Energy wood thinning was substituted for young stand thinning and the first commercial thinning of industrial wood. The study was based on the forest stand data from Southern Finland, which were simulated by the MOTTI-simulator. The main interest was to find out the climatic benefits resulting from carbon sequestration and energy substitution. The value of energy wood was set to substitute it for coal as an alternative energy fuel (emission trade). Other political instruments (Kemera subsidies) were also analysed. The largest carbon dioxide emission reductions were achieved as a combination of carbon sequestration and energy substitution (on average, a 26-90 % increase in discounted present value in the beginning of rotation) compared to the baseline. Energy substitution increased emission reductions more effectively than carbon sequestration, when maintaining dense young stands. According to the study, energy wood thinning as a part of forest management was more profitable than the baseline when the value of carbon dioxide averaged more than 15 €/CO2 and other political subsidies were unchanged. Alternatively, the price of energy wood should on average exceed 21 €/m3 on the roadside in order to be profitable in the absence of political instruments. The most cost-efficient employment of energy wood thinning occured when the dominant height was 12 meters, when energy substitution was taken into account. According to alternative forest management, thinning of sapling stands could be done earlier or less intensely than thinning based on silvicultural recommendations and the present criteria of subsidies. Consequently, the first commercial thinning could be profitable to carry out either as harvesting of industrial wood or energy wood, or as integrated harvesting depending on the costs of the harvesting methods available and the price level of small-size industrial wood compared to energy wood.
Resumo:
The first aim of this thesis was to produce data for evaluating, developing and recommending biologically and economically efficient energy and protein feeding strategies for growing and finishing dairy bulls offered grass silage-based diets. The second aim was to calculate the energy and protein supplies of the dairy bulls fed different grass silage-cereal-based diets and, based on this, to estimate the possible need to revise the current Finnish energy and protein recommendations for growing dairy bulls. The third aim was to demonstrate the phosphorus supply of dairy bulls fed grass silage-cereal-based diets with or without protein supplementation in relation to current feeding recommendations for phosphorus. The results indicate that protein supplement is not needed for finishing dairy bulls (live weight more than 250 kg) when they are fed good-quality grass silage (digestible organic matter more than 650 g/kg dry matter, restricted fermentation with low concentrations of fermentation acids and ammonia N) and grain-based concentrate with a moderate (300-700 g/kg dry matter) concentrate level. The results also suggest that with total mixed ration feeding it is possible to use rather high concentrate proportions (700 g/kg dry matter) in feeding dairy bulls. According to this study, barley fibre is a suitable energy supplement with good-quality silage for growing dairy bulls. The results suggest that 50% of barley grain can be replaced with barley fibre without affecting growth. Also oats is a suitable energy supplement for dairy bulls. However, as a consequence of decreased energy intake, the gain and feed conversion of the bulls were slightly reduced in this study when barley grain was replaced by oats in the diet. Ultimately, the rationality of the use of barley fibre and oats in the future will depend on the price in relation to other concentrates. During the feeding experiments the calculated supply of energy was 10% higher than in the Finnish feeding recommendations for the present growth rate. This indicates that there is a need to update the Finnish feeding recommendations for dairy-breed growing bulls, and further calculations are needed for the energy supply of growing dairy bulls. The calculated supply of AAT (amino acids absorbed from the small intestine) was 38% higher than in the Finnish feeding recommendations for the present growth. Possibly, the present AAT-PBV system is not an optimal protein evaluation system for growing dairy bulls more than 250 kg live weight. The calculations based on the feeding experiments and the Finnish feeding recommendations indicate that in most cases the dairy bulls (live weight more than 250 kg) received enough P from the basic grass silage cereal-based diets without additional mineral feeds. Therefore there is no need to add P in the form of mineral mixtures.
Resumo:
In the European Union, conventional cages for laying hens will be faded out at the beginning of 2012. The rationale behind this is a public concern over animal welfare in egg production. As alternatives to conventional cages, the European Union Council Directive 1999/74/EC allows non-cage systems and enriched (furnished) cages. Layer performance, behavior, and welfare in differently sized furnished cages have been investigated quite widely during recent decades, but nutrition of hens in this production system has received less attention. This thesis aims to compare production and feed intake of laying hens in furnished and conventional cages and to study the effects of different dietary treatments in these production systems, thus contributing to the general knowledge of furnished cages as an egg production system. A furnished cage model for 8 hens was compared with a 3-hen conventional cage. Three consecutive experiments each studied one aspect of layer diet: The first experiment investigated the effects of dietary protein/energy ratio, the second dietary energy levels, and the third the effects of extra limestone supplementation. In addition, a fourth experiment evaluated the effects of perches on feed consumption and behavior of hens in furnished cages. The dietary treatments in experiments 1 3 generally had similar effects in the two cage types. Thus, there was no evidence supporting a change in nutrient requirements for laying hens when conventional cages are replaced with small-group furnished cages. Moreover, the results from nutritional experiments conducted in conventional cages can be applied to small-group furnished cage systems. These results support the view that production performance comparable with conventional cages can be achieved in furnished cages. All of the advantages of cages for bird welfare are sustained in the small-group furnished cages used here. In addition, frequent use of perches and nests implies a wider behavioral repertoire in furnished cages than in conventional cages. The increase observed in bone ash content may improve bird welfare in furnished cages. The presence of perches diminished feed consumption during the prelaying period and enhanced the feed conversion ratio during the early laying period in furnished cages. However, as the presence or absence of perches in furnished cages had no significant effect on feed consumption after the prelaying period, the lower feed consumption observed in furnished cages than in conventional cages could be attributed to other factors, such as the presence of wood shavings or a nest box. The wider feed trough space per hen in conventional than in furnished cages may partly explain the higher feed consumption observed in conventional cages.
Resumo:
The main objective of this thesis was to elucidate the effects of regrowth grass silage and red clover silage on nutrient supply and milk production of dairy cows as compared with primary growth grass silages. In the first experiment (publication I), two primary growth and four regrowth grass silages were harvested at two stages of growth. These six silages were fed to 24 lactating dairy cows with two levels of concentrate allowance. Silage intake and energy corrected milk yield (ECM) responses, and the range in these response variables between the diets, were smaller when regrowth silages rather than primary growth silages were fed. Milk production of dairy cows reflected the intake of metabolizable energy (ME), and no differences in the ME utilization were found between the diets based on silages harvested from primary growth and regrowth. The ECM response to increased concentrate allowance was, on average, greater when regrowth rather than primary growth silages were fed. In the second experiment (publication II), two silages from primary growth and two from regrowth used in I were fed to rumen cannulated lactating dairy cows. Cows consumed less feed dry matter (DM), energy and protein, and produced less milk, when fed diets based on regrowth silages rather than primary growth silages. Lower milk production responses of regrowth grass silage diets were mainly due to the lower silage DM intake, and could not be accounted for by differences in energy or protein utilization. Regrowth grass silage intake was not limited due to neutral detergent fibre (NDF) digestion or rumen fill or passage kinetics. However, lower intake may be at least partly attributable to plant diseases such as leaf spot infections, dead deteriorating material or abundance of weeds, which are all higher in regrowth compared with primary growth, and increase with advancing regrowth. In the third experiment (publications III and IV), red clover silages and grass silages harvested at two stages of growth, and a mixed diet of red clover and grass silages, were fed to five rumen cannulated lactating dairy cows. In spite of the lower average ME intake for red clover diets, the ECM production remained unchanged suggesting more efficient utilisation of ME for red clover diets compared with grass diets. Intake of N, and omasal canal flows of total non-ammonia N (NAN), microbial and non-microbial NAN were higher for red clover than for grass silage diets, but were not affected by forage maturity. Delaying the harvest tended to decrease DM intake of grass silage and increase that of red clover silage. The digestion rate of potentially digestible NDF was faster for red clover diets than for grass silage diets. Delaying the harvest decreased the digestion rate for grass but increased it for red clover silage diets. The low intake of early-cut red clover silage could not be explained by silage digestibility, fermentation quality, or rumen fill but was most likely related to the nutritionally suboptimal diet composition because inclusion of moderate quality grass silage in mixed diet increased silage DM intake. Despite the higher total amino acid supply of cows fed red clover versus grass silage diets, further milk production responses on red clover diets were possibly compromised by an inadequate supply of methionine as evidenced by lower methionine concentration in the amino acid profile of omasal digesta and plasma. Increasing the maturity of ensiled red clover does not seem to affect silage DM intake as consistently as that of grasses. The efficiency of N utilization for milk protein synthesis was lower for red clover diets than for grass diets. It was negatively related to diet crude protein concentration similarly to grass silage diets.
Resumo:
In Finland, suckler cow production is carried out in circumstances characterized by a long winter period and a short grazing period. The traditional winter housing system for suckler cows has been insulated or uninsulated buildings, but there is a demand for developing less expensive housing systems. In addition, more information is needed on new winter feeding strategies, carried out in inexpensive winter facilities with conventional (hay, grass silage, straw) or alternative (treated straw, industrial by-product, whole-crop silage) feeds. The new feeding techniques should not have any detrimental effects on animal welfare in order to be acceptable to both farmers and consumers. Furthermore, no official feeding recommendations for suckler cows are available in Finland and, thus, recommendations for dairy cows have been used. However, this may lead to over- or underfeeding of suckler cows and, finally, to decreased economic output. In Experiment I, second-calf beef-dairy suckler cows were used to compare the effects of diets based on hay (H) or urea-treated straw (US) at two feeding levels (Moderate; M vs. Low; L) on the performance of cows and calves. Live weight (LW) gain during the indoor feeding was lower for cows on level L than on level M. Cows on diet US lost more LW indoors than those on diet H. The cows replenished the LW losses on good pasture. Calf LW gain and cow milk production were unaffected by the treatments. Conception rate was unaffected by the treatments but was only 69%. Urea-treated straw proved to be a suitable winter feed for spring-calving suckler cows. Experiment II studied the effects of feeding accuracy on the performance of first- and second-calf beef-dairy cows and calves. In II-1, the day-to-day variation in the roughage offered ranged up to ± 40%. In II-2, the same variation was used in two-week periods. Variation of the roughages offered had minor effects on cow performance. Reproduction was unaffected by the feeding accuracy. Accurate feeding is not necessary for young beef-dairy crosses, if the total amount of energy offered over a period of a few weeks fulfills the energy requirements. Effects of feeding strategies with alternative feeds on the performance of mature beef-dairy and beef cows and calves were evaluated in Experiment III. Two studies consisted of two feeding strategies (Step-up vs. Flat-rate) and two diets (Control vs. Alternative). There were no differences between treatments in the cow LW, body condition score (BCS), calf pre-weaning LW gain and cow reproduction. A flat-rate strategy can be practised in the nutrition of mature suckler cows. Oat hull based flour-mill by product can partly replace grass silage and straw in the winter diet. Whole-crop barley silage can be offered as a sole feed to suckler cows. Experiment IV evaluated during the winter feeding period the effects of replacing grass silage with whole-crop barley or oat silage on mature beef cow and calf performance. Both whole-crop silages were suitable winter feeds for suckler cows in cold outdoor winter conditions. Experiment V aimed at assessing the effects of daily feeding vs. feeding every third day on the performance of mature beef cows and calves. No differences between the treatments were observed in cow LW, BCS, milk production and calf LW. The serum concentrations of urea and long-chain fatty acids were increased on the third day after feeding in the cows fed every third day. Despite of that the feeding every third day is an acceptable feeding strategy for mature suckler cows. Experiment VI studied the effects of feeding levels and long-term cold climatic conditions on mature beef cows and calves. The cows were overwintered in outdoor facilities or in an uninsulated indoor facility. Whole-crop barley silage was offered either ad libitum or restricted. All the facilities offered adequate shelter for the cows. The restricted offering of whole-crop barley silage provided enough energy for the cows. The Finnish energy recommendations for dairy cows were too high for mature beef breed suckler cows in good body condition at housing, even in cold conditions. Therefore, there is need to determine feeding recommendations for suckler cows in Finland. The results showed that the required amount of energy can be offered to the cows using conventional or alternative feeds provided at a lower feeding level, with an inaccurate feeding, flat-rate feeding or feeding every third day strategy. The cows must have an opportunity to replenish the LW and BCS losses at pasture before the next winter. Production in cold conditions can be practised in inexpensive facilities when shelter against rain and wind, a dry resting place, adequate amounts of feed suitable for cold conditions and water are provided for the animals as was done in the present study.