68 resultados para Ecological Processes

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ilmasto vaikuttaa ekologisiin prosesseihin eri tasoilla. Suuren mittakaavan ilmastoprosessit, yhdessä ilmakehän ja valtamerien kanssa, säätelevät paikallisia sääilmiöitä suurilla alueilla (mantereista pallopuoliskoihin). Tämä väistöskirja pyrkii selittämään kuinka suuren mittakaavan ilmasto on vaikuttanut tiettyihin ekologisiin prosesseihin pohjoisella havumetsäalueella. Valitut prosessit olivat puiden vuosilustojen kasvu, metsäpalojen esiintyminen ja vuoristomäntykovakuoriaisen aiheuttamat puukuolemat. Suuren mittakaavan ilmaston löydettiin vaikuttaneen näiden prosessien esiintymistiheyteen, kestoon ja levinneisyyteen keskeisten sään muuttujien välityksellä hyvin laajoilla alueilla. Tutkituilla prosesseilla oli vahva yhteys laajan mittakaavan ilmastoon. Yhteys on kuitenkin ollut hyvin dynaaminen ja muuttunut 1900-luvulla ilmastonmuutoksen aiheuttaessa muutoksia suuren mittakaavan ja alueellisten ilmastoprosessien välisiin sisäisiin suhteisiin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Buffer zones are vegetated strip-edges of agricultural fields along watercourses. As linear habitats in agricultural ecosystems, buffer strips dominate and play a leading ecological role in many areas. This thesis focuses on the plant species diversity of the buffer zones in a Finnish agricultural landscape. The main objective of the present study is to identify the determinants of floral species diversity in arable buffer zones from local to regional levels. This study was conducted in a watershed area of a farmland landscape of southern Finland. The study area, Lepsämänjoki, is situated in the Nurmijärvi commune 30 km to the north of Helsinki, Finland. The biotope mosaics were mapped in GIS. A total of 59 buffer zones were surveyed, of which 29 buffer strips surveyed were also sampled by plot. Firstly, two diversity components (species richness and evenness) were investigated to determine whether the relationship between the two is equal and predictable. I found no correlation between species richness and evenness. The relationship between richness and evenness is unpredictable in a small-scale human-shaped ecosystem. Ordination and correlation analyses show that richness and evenness may result from different ecological processes, and thus should be considered separately. Species richness correlated negatively with phosphorus content, and species evenness correlated negatively with the ratio of organic carbon to total nitrogen in soil. The lack of a consistent pattern in the relationship between these two components may be due to site-specific variation in resource utilization by plant species. Within-habitat configuration (width, length, and area) were investigated to determine which is more effective for predicting species richness. More species per unit area increment could be obtained from widening the buffer strip than from lengthening it. The width of the strips is an effective determinant of plant species richness. The increase in species diversity with an increase in the width of buffer strips may be due to cross-sectional habitat gradients within the linear patches. This result can serve as a reference for policy makers, and has application value in agricultural management. In the framework of metacommunity theory, I found that both mass effect(connectivity) and species sorting (resource heterogeneity) were likely to explain species composition and diversity on a local and regional scale. The local and regional processes were interactively dominated by the degree to which dispersal perturbs local communities. In the lowly and intermediately connected regions, species sorting was of primary importance to explain species diversity, while the mass effect surpassed species sorting in the highly connected region. Increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities, and consequently, to lower regional diversity, while local species richness was unrelated to the habitat connectivity. Of all species found, Anthriscus sylvestris, Phalaris arundinacea, and Phleum pretense significantly responded to connectivity, and showed high abundance in the highly connected region. We suggest that these species may play a role in switching the force from local resources to regional connectivity shaping the community structure. On the landscape context level, the different responses of local species richness and evenness to landscape context were investigated. Seven landscape structural parameters served to indicate landscape context on five scales. On all scales but the smallest scales, the Shannon-Wiener diversity of land covers (H') correlated positively with the local richness. The factor (H') showed the highest correlation coefficients in species richness on the second largest scale. The edge density of arable field was the only predictor that correlated with species evenness on all scales, which showed the highest predictive power on the second smallest scale. The different predictive power of the factors on different scales showed a scaledependent relationship between the landscape context and local plant species diversity, and indicated that different ecological processes determine species richness and evenness. The local richness of species depends on a regional process on large scales, which may relate to the regional species pool, while species evenness depends on a fine- or coarse-grained farming system, which may relate to the patch quality of the habitats of field edges near the buffer strips. My results suggested some guidelines of species diversity conservation in the agricultural ecosystem. To maintain a high level of species diversity in the strips, a high level of phosphorus in strip soil should be avoided. Widening the strips is the most effective mean to improve species richness. Habitat connectivity is not always favorable to species diversity because increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities (beta diversity) and, consequently, to lower regional diversity. Overall, a synthesis of local and regional factors emerged as the model that best explain variations in plant species diversity. The studies also suggest that the effects of determinants on species diversity have a complex relationship with scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fire is an important driver of the boreal forest ecosystem, and a useful tool for the restoration of degraded forests. However, we lack knowledge on the ecological processes initiated by prescribed fires, and whether they bring about the desired restoration effects. The purpose of this study was to investigate the impacts of low-intensity experimental prescribed fires on four ecological processes in young commercial Scots pine (Pinus sylvestris) stands eight years after the burning. The processes of interest were tree mortality, dead wood creation, regeneration and fire scar formation. These were inventoried in twelve study plots, which were 30 m x 30 m in size. The plots belonged to two different stand age classes: 30-35 years or 45 years old at the time of burning. The study was partly a follow-up of study plots researched by Sidoroff et al. (2007) one year after burning in 2003. Tree mortality increased from 183 stems ha-1 in 2003 to 259 stems ha-1 in 2010, corresponding to 15 % and 21 % of stem number respectively. Most mortality was experienced in the stands of the younger age class, in smaller diameter classes and among species other than Scots pine. By 2010, the average mortality of Scots pine per plot was 18%, but varied greatly ranging from 0% to 63% of stem number. Delayed mortality, i.e. mortality that occurred between 2 and 8 years after fire, seemed to become more important with increasing diameter. The input of dead wood also varied greatly between plots, from none to 72 m3 ha-1, averaging at 12 m3 ha-1. The amount of fire scarred trees per plot ranged from none to 20 %. Four out of twelve plots (43 %) did not have any fire scars. Scars were on average small: 95% of scars were less than 4 cm in width, and 75% less than 40 cm in length. Owing to the light nature of the fire, the remaining overstorey and thick organic layer, regeneration was poor overall. The abundance of pine and other seedlings indicated a viable seed source existed, but the seedlings failed to establish under dense canopy. The number of saplings ranged from 0 to 12 333 stems ha-1. The results of this study indicate that a low intensity fire does not necessarily initiate the ecological processes of tree mortality, dead wood creation and regeneration in the desired scale. Fire scars, which form the basis of fire dating in fire history studies, did not form in all cases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many species inhabit fragmented landscapes, resulting either from anthropogenic or from natural processes. The ecological and evolutionary dynamics of spatially structured populations are affected by a complex interplay between endogenous and exogenous factors. The metapopulation approach, simplifying the landscape to a discrete set of patches of breeding habitat surrounded by unsuitable matrix, has become a widely applied paradigm for the study of species inhabiting highly fragmented landscapes. In this thesis, I focus on the construction of biologically realistic models and their parameterization with empirical data, with the general objective of understanding how the interactions between individuals and their spatially structured environment affect ecological and evolutionary processes in fragmented landscapes. I study two hierarchically structured model systems, which are the Glanville fritillary butterfly in the Åland Islands, and a system of two interacting aphid species in the Tvärminne archipelago, both being located in South-Western Finland. The interesting and challenging feature of both study systems is that the population dynamics occur over multiple spatial scales that are linked by various processes. My main emphasis is in the development of mathematical and statistical methodologies. For the Glanville fritillary case study, I first build a Bayesian framework for the estimation of death rates and capture probabilities from mark-recapture data, with the novelty of accounting for variation among individuals in capture probabilities and survival. I then characterize the dispersal phase of the butterflies by deriving a mathematical approximation of a diffusion-based movement model applied to a network of patches. I use the movement model as a building block to construct an individual-based evolutionary model for the Glanville fritillary butterfly metapopulation. I parameterize the evolutionary model using a pattern-oriented approach, and use it to study how the landscape structure affects the evolution of dispersal. For the aphid case study, I develop a Bayesian model of hierarchical multi-scale metapopulation dynamics, where the observed extinction and colonization rates are decomposed into intrinsic rates operating specifically at each spatial scale. In summary, I show how analytical approaches, hierarchical Bayesian methods and individual-based simulations can be used individually or in combination to tackle complex problems from many different viewpoints. In particular, hierarchical Bayesian methods provide a useful tool for decomposing ecological complexity into more tractable components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interaction between forests and the atmosphere occurs by radiative and turbulent transport. The fluxes of energy and mass between surface and the atmosphere directly influence the properties of the lower atmosphere and in longer time scales the global climate. Boreal forest ecosystems are central in the global climate system, and its responses to human activities, because they are significant sources and sinks of greenhouse gases and of aerosol particles. The aim of the present work was to improve our understanding on the existing interplay between biologically active canopy, microenvironment and turbulent flow and quantify. In specific, the aim was to quantify the contribution of different canopy layers to whole forest fluxes. For this purpose, long-term micrometeorological and ecological measurements made in a Scots pine (Pinus sylvestris) forest at SMEAR II research station in Southern Finland were used. The properties of turbulent flow are strongly modified by the interaction between the canopy elements: momentum is efficiently absorbed in the upper layers of the canopy, mean wind speed and turbulence intensities decrease rapidly towards the forest floor and power spectra is modulated by spectral short-cut . In the relative open forest, diabatic stability above the canopy explained much of the changes in velocity statistics within the canopy except in strongly stable stratification. Large eddies, ranging from tens to hundred meters in size, were responsible for the major fraction of turbulent transport between a forest and the atmosphere. Because of this, the eddy-covariance (EC) method proved to be successful for measuring energy and mass exchange inside a forest canopy with exception of strongly stable conditions. Vertical variations of within canopy microclimate, light attenuation in particular, affect strongly the assimilation and transpiration rates. According to model simulations, assimilation rate decreases with height more rapidly than stomatal conductance (gs) and transpiration and, consequently, the vertical source-sink distributions for carbon dioxide (CO2) and water vapor (H2O) diverge. Upscaling from a shoot scale to canopy scale was found to be sensitive to chosen stomatal control description. The upscaled canopy level CO2 fluxes can vary as much as 15 % and H2O fluxes 30 % even if the gs models are calibrated against same leaf-level dataset. A pine forest has distinct overstory and understory layers, which both contribute significantly to canopy scale fluxes. The forest floor vegetation and soil accounted between 18 and 25 % of evapotranspiration and between 10 and 20 % of sensible heat exchange. Forest floor was also an important deposition surface for aerosol particles; between 10 and 35 % of dry deposition of particles within size range 10 30 nm occurred there. Because of the northern latitudes, seasonal cycle of climatic factors strongly influence the surface fluxes. Besides the seasonal constraints, partitioning of available energy to sensible and latent heat depends, through stomatal control, on the physiological state of the vegetation. In spring, available energy is consumed mainly as sensible heat and latent heat flux peaked about two months later, in July August. On the other hand, annual evapotranspiration remains rather stable over range of environmental conditions and thus any increase of accumulated radiation affects primarily the sensible heat exchange. Finally, autumn temperature had strong effect on ecosystem respiration but its influence on photosynthetic CO2 uptake was restricted by low radiation levels. Therefore, the projected autumn warming in the coming decades will presumably reduce the positive effects of earlier spring recovery in terms of carbon uptake potential of boreal forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To protect and restore lake ecosystems under threats posed by the increasing human population, information on their ecological quality is needed. Lake sediments provide a data rich archive that allows identification of various biological components present prior to anthropogenic alterations as well as a constant record of changes. By providing a longer dimension of time than any ongoing monitoring programme, palaeolimnological methods can help in understanding natural variability and long-term ecological changes in lakes. As zooplankton have a central role in the lake food web, their remains can potentially provide versatile information on past trophic structure. However, various taphonomic processes operating in the lakes still raise questions concerning how subfossil assemblages reflect living communities. This thesis work aimed at improving the use of sedimentary zooplankton remains in the reconstruction of past zooplankton communities and the trophic structure in lakes. To quantify interspecific differences in the accumulation of remains, the subfossils of nine pelagic zooplankton taxa in annually laminated sediments were compared with monitoring results for live zooplankton in Lake Vesijärvi. This lake has a known history of eutrophication and recovery, which resulted from reduced external loading and effective fishing of plankti-benthivorous fish. The response of zooplankton assemblages to these known changes was resolved using annually laminated sediments. The generality of the responses observed in Lake Vesijärvi were further tested with a set of 31 lakes in Southern Finland, relating subfossils in surface sediments to contemporary water quality and fish density, as well as to lake morphometry. The results demonstrated differential preservation and retention of cladoceran species in the sediment. Daphnia, Diaphanosoma and Ceriodaphnia were clearly underrepresented in the sediment samples in comparison to well-preserved Bosmina species, Chydorus, Limnosida and Leptodora. For well-preserved species, the annual net accumulation rate was similar to or above the expected values, reflecting effective sediment focusing and accumulation in the deepest part of the lake. The decreased fish density and improved water quality led to subtle changes in zooplankton community composition. The abundance of Diaphanosoma and Limnosida increased after the reduction in fish density, while Ceriodaphnia and rotifers decreased. The most sensitive indicator of fish density was the mean size of Daphnia ephippia and Bosmina (E.) crassicornis ephippia and carapaces. The concentration of plant-associated species increased, reflecting expanding littoral vegetation along with increasing transparency. Several of the patterns observed in Lake Vesijärvi could also be found within the set of 31 lakes. According to this thesis work, the most useful cladoceran-based indices for nutrient status and planktivorous fish density in Finnish lakes were the relative abundances of certain pelagic taxa, and the mean size of Bosmina spp. carapaces, especially those of Bosmina (E.) cf. coregoni. The abundance of plant-associated species reflected the potential area for aquatic plants. Lake morphometry and sediment organic content, however, explained a relatively high proportion of the variance in the species data, and more studies are needed to quantify lake-specific differences in the accumulation and preservation of remains. Commonly occurring multicollinearity between environmental variables obstructs the cladoceran-based reconstruction of single environmental variables. As taphonomic factors and several direct and indirect structuring forces in lake ecosystems simultaneously affect zooplankton, the subfossil assemblages should be studied in a holistic way before making final conclusions about the trophic structure and the change in lake ecological quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil is an unrenewable natural resource under increasing anthropogenic pressure. One of the main threats to soils, compromising their ability to provide us with the goods and ecosystem services we expect, is pollution. Oil hydrocarbons are the most common soil contaminants, and they disturb not just the biota but also the physicochemical properties of soils. Indigenous soil micro-organisms respond rapidly to changes in the soil ecosystem, and are chronically in direct contact with the hydrophobic pollutants on the soil surfaces. Soil microbial variables could thus serve as an intrinsically relevant indicator of soil quality, to be used in the ecological risk assessment of contaminated and remediated soils. Two contrasting studies were designed to investigate soil microbial ecological responses to hydrocarbons, together with parallel changes in soil physicochemical and ecotoxicological properties. The aim was to identify quantitative or qualitative microbiological variables that would be practicable and broadly applicable for the assessment of the quality and restoration of oil-polluted soil. Soil bacteria commonly react on hydrocarbons as a beneficial substrate, which lead to a positive response in the classical microbiological soil quality indicators; negative impacts were accurately reflected only after severe contamination. Hydrocarbon contaminants become less bioavailable due to weathering processes, and their potentially toxic effects decrease faster than the total concentration. Indigenous hydrocarbon degrader bacteria, naturally present in any terrestrial environment, use specific mechanisms to improve access to the hydrocarbon molecules adsorbed on soil surfaces. Thus when contaminants are unavailable even to the specialised degraders, they should pose no hazard to other biota either. Change in the ratio of hydrocarbon degrader numbers to total microbes was detected to predictably indicate pollutant effects and bioavailability. Also bacterial diversity, a qualitative community characteristic, decreased as a response to hydrocarbons. Stabilisation of community evenness, and community structure that reflected clean reference soil, indicated community recovery. If long-term temporal monitoring is difficult and appropriate clean reference soil unavailable, such comparison could possibly be based on DNA-based community analysis, reflecting past+present, and RNA-based community analysis, showing exclusively present conditions. Microbial ecological indicators cannot replace chemical oil analyses, but they are theoretically relevant and operationally practicable additional tools for ecological risk assessment. As such, they can guide ecologically informed and sustainable ecosophisticated management of oil-contaminated lands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a need for better understanding of the processes and new ideas to develop traditional pharmaceutical powder manufacturing procedures. Process analytical technology (PAT) has been developed to improve understanding of the processes and establish methods to monitor and control processes. The interest is in maintaining and even improving the whole manufacturing process and the final products at real-time. Process understanding can be a foundation for innovation and continuous improvement in pharmaceutical development and manufacturing. New methods are craved for to increase the quality and safety of the final products faster and more efficiently than ever before. The real-time process monitoring demands tools, which enable fast and noninvasive measurements with sufficient accuracy. Traditional quality control methods have been laborious and time consuming and they are performed off line i.e. the analysis has been removed from process area. Vibrational spectroscopic methods are responding this challenge and their utilisation have increased a lot during the past few years. In addition, other methods such as colour analysis can be utilised in noninvasive real-time process monitoring. In this study three pharmaceutical processes were investigated: drying, mixing and tabletting. In addition tablet properties were evaluated. Real-time monitoring was performed with NIR and Raman spectroscopies, colour analysis, particle size analysis and compression data during tabletting was evaluated using mathematical modelling. These methods were suitable for real-time monitoring of pharmaceutical unit operations and increase the knowledge of the critical parameters in the processes and the phenomena occurring during operations. They can improve our process understanding and therefore, finally, enhance the quality of final products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distraction in the workplace is increasingly more common in the information age. Several tasks and sources of information compete for a worker's limited cognitive capacities in human-computer interaction (HCI). In some situations even very brief interruptions can have detrimental effects on memory. Nevertheless, in other situations where persons are continuously interrupted, virtually no interruption costs emerge. This dissertation attempts to reveal the mental conditions and causalities differentiating the two outcomes. The explanation, building on the theory of long-term working memory (LTWM; Ericsson and Kintsch, 1995), focuses on the active, skillful aspects of human cognition that enable the storage of task information beyond the temporary and unstable storage provided by short-term working memory (STWM). Its key postulate is called a retrieval structure an abstract, hierarchical knowledge representation built into long-term memory that can be utilized to encode, update, and retrieve products of cognitive processes carried out during skilled task performance. If certain criteria of practice and task processing are met, LTWM allows for the storage of large representations for long time periods, yet these representations can be accessed with the accuracy, reliability, and speed typical of STWM. The main thesis of the dissertation is that the ability to endure interruptions depends on the efficiency in which LTWM can be recruited for maintaing information. An observational study and a field experiment provide ecological evidence for this thesis. Mobile users were found to be able to carry out heavy interleaving and sequencing of tasks while interacting, and they exhibited several intricate time-sharing strategies to orchestrate interruptions in a way sensitive to both external and internal demands. Interruptions are inevitable, because they arise as natural consequences of the top-down and bottom-up control of multitasking. In this process the function of LTWM is to keep some representations ready for reactivation and others in a more passive state to prevent interference. The psychological reality of the main thesis received confirmatory evidence in a series of laboratory experiments. They indicate that after encoding into LTWM, task representations are safeguarded from interruptions, regardless of their intensity, complexity, or pacing. However, when LTWM cannot be deployed, the problems posed by interference in long-term memory and the limited capacity of the STWM surface. A major contribution of the dissertation is the analysis of when users must resort to poorer maintenance strategies, like temporal cues and STWM-based rehearsal. First, one experiment showed that task orientations can be associated with radically different patterns of retrieval cue encodings. Thus the nature of the processing of the interface determines which features will be available as retrieval cues and which must be maintained by other means. In another study it was demonstrated that if the speed of encoding into LTWM, a skill-dependent parameter, is slower than the processing speed allowed for by the task, interruption costs emerge. Contrary to the predictions of competing theories, these costs turned out to involve intrusions in addition to omissions. Finally, it was learned that in rapid visually oriented interaction, perceptual-procedural expectations guide task resumption, and neither STWM nor LTWM are utilized due to the fact that access is too slow. These findings imply a change in thinking about the design of interfaces. Several novel principles of design are presented, basing on the idea of supporting the deployment of LTWM in the main task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The issue of the usefulness of different prosopis species versus their status as weeds is a matter of hot debate around the world. The tree Prosopis juliflora had until 2000 been proclaimed weedy in its native range in South America and elsewhere in the dry tropics. P. juliflora or mesquite has a 90-year history in Sudan. During the early 1990s a popular opinion in central Sudan and the Sudanese Government had begun to consider prosopis a noxious weed and a problematic tree species due to its aggressive ability to invade farmlands and pastures, especially in and around irrigated agricultural lands. As a consequence prosopis was officially declared an invasive alien species also in Sudan, and in 1995 a presidential decree for its eradication was issued. Using a total economic valuation (TEV) approach, this study analysed the impacts of prosopis on the local livelihoods in two contrasting irrigated agricultural schemes. Primarily a problem-based approach was used in which the derivation of non-market values was captured using ecological economic tools. In the New Halfa Irrigation Scheme in Kassala State, four separate household surveys were conducted due to diversity between the respective population groups. The main aim was here to study the magnitude of environmental economic benefits and costs derived from the invasion of prosopis in a large agricultural irrigation scheme on clay soil. Another study site, the Gandato Irrigation Scheme in River Nile State represented impacts from prosopis that an irrigation scheme was confronted with on sandy soil in the arid and semi-arid ecozones along the main River Nile. The two cases showed distinctly different effects of prosopis but both indicated the benefits to exceed the costs. The valuation on clay soil in New Halfa identified a benefit/cost ratio of 2.1, while this indicator equalled 46 on the sandy soils of Gandato. The valuation results were site-specific and based on local market prices. The most important beneficial impacts of prosopis on local livelihoods were derived from free-grazing forage for livestock, environmental conservation of the native vegetation, wood and non-wood forest products, as well as shelterbelt effects. The main social costs from prosopis were derived from weeding and clearing it from farm lands and from canalsides, from thorn injuries to humans and livestock, as well as from repair expenses vehicle tyre punctures. Of the population groups, the tenants faced most of the detrimental impacts, while the landless population groups (originating from western and eastern Sudan) as well as the nomads were highly dependent on this tree resource. For the Gandato site the monetized benefit-cost ratio of 46 still excluded several additional beneficial impacts of prosopis in the area that were difficult to quantify and monetize credibly. In River Nile State the beneficial impact could thus be seen as completely outweighing the costs of prosopis. The results can contributed to the formulation of national and local forest and agricultural policies related to prosopis in Sudan and also be used in other countries faced with similar impacts caused by this tree.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sichuanissa Tiibetin ylängön metsäkato on pysähtynyt mutta eroosio-ongelmat jatkuvat Viikin tropiikki-instituutin tutkija Ping ZHOU kartoitti trooppisen metsänhoidon alaan kuuluvassa väitöskirjatyössään maaperän eroosioalttiutta ja sen riippuvuutta metsäkasvillisuudesta Jangtsen tärkeää sivuhaaraa Min-jokea ympäröivällä n. 7400 neliökilometrin suuruisella valuma-alueella Sichuanin Aba-piirikunnassa. Aineistonaan hän käytti muun muassa satelliittikartoitustietoja ja mittaustuloksia yli 600 maastokoealalta. Tutkimuksen nimi suomeksi on "Maaperän eroosion mallinnus ja vuoristoisen valuma-alueen ekologinen ennallistaminen Sichuanissa Kiinassa". Aikaisempien tutkimusten perusteella oli tiedossa että metsien häviäminen tällä alueella pysähtyi jo 1980-luvun alussa. Sen jälkeen on metsien pinta-ala hitaasti kasvanut etupäässä sen vuoksi, että teollinen puunhakkuu luonnonmetsissä kiellettiin kokonaan v. 1998 ja 25 astetta jyrkemmillä rinteillä myös maatalouden harjoittaminen on saatu lopetetuksi viljelijöille tarjottujen taloudellisten houkuttimien avulla. Täten myös pelto- ja laidunmaata on voitu ennallistaa metsäksi. Ping Zhou pystyi jakamaan 5700 metrin korkeuteen saakka kohoavan vuoristoalueen eroosioalttiudeltaan erilaisiin vyöhykkeisiin rinteen kaltevuuden, sademäärän, kasvipeitteen ja maalajin perusteella. Noin 15 prosentilla tutkitun valuma-alueen pinta-alasta, lähinnä Min-joen pääuomaa ympäröivillä jyrkillä rinteillä, eroosioriski oli suuri tai erittäin suuri. Eri tyyppisellä kasvillisuudella oli hyvin erilainen vaikutus eroosioalttiuteen, ja myös alueen sijainti vuoriston eri korkeuksilla vaikutti eroosioon. Säästyneet lähes luonnontilaiset havumetsät, joita on etupäässä vuoriston ylimmissä osissa 2600-4000 metrin korkeudella, edistävät tehokkaasti metsän luontaista uudistumista ja levittäytymistä vaurioituneille alueille. Säilyneiden metsien puulajikoostumus antoi tutkimuksessa mahdollisuuden ennustaa metsien tulevaa kehitystä koko tutkitulla valuma-alueella sen eri korkeusvyöhykkeissä ja eri maaperätyypeillä. Ennallistamisen kannalta ongelmallisimpia olivat alueet joilta metsäpeite oli lähinnä puiden teollisen hakkuun vuoksi kokonaan hävinnyt ja joilla maaperä yleisesti oli eroosion pahoin kuluttama. Näillä alueilla ei ole tehty juuri mitään uudistamis- tai ennallistamistoimenpiteitä. Niillä metsien ennallistaminen vaatii myös puiden tai pensaiden istuttamista. Tähän sopivia ovat erityisesti ilmakehän typpeä sitovat lajit, joista alueella kasvaa luontaisena mm. sama tyrnilaji joka esiintyy myös Suomessa. Työssä tutkittiin yli kahdeksankymmenen paikallisen luontaisen puulajin (joista peräti noin kolmannes on havupuulajeja) ekologisia ominaisuuksia ja soveltuvuutta metsien ennallistamiseen. Avainasemassa työn onnistumisen kannalta ovat nyt paikalliset asukkaat, joiden maankäytön muutokset ovat jo selvästi edistänet luonnonmetsän ennalleen palautumista. Suomen Akatemia rahoitti vuosina 2004-2006 VITRI:n tutkimushanketta, josta Ping Zhou'n väitöskirjatyö muodosti keskeisen osan. Kenttätyö Sichuanissa avasi mahdollisuuden hedelmälliseen monitieteiseen yhteistyöhön ja tutkijavaihtoon Kiinan tiedeakatemian alaisen Chengdun biologiainstituutin (CIB) kanssa; tämä tieteellinen kanssakäyminen jatkuu edelleen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first aim of this thesis was to explore the structural characteristics of near-natural forests and to quantify how human utilization has changed them. For this, we examined the stand characteristics in Norway spruce Picea abies (L.) Karst-dominated old-growth stands in northwestern Russia and in old Scots pine Pinus sylvestris L.-dominated stands in three regions from southern Finland to northwestern Russia. In the second study, we also compared stands with different degrees of human impact, from near-natural stands and stands selectively cut in the past to managed stands. Secondly, we used an experimental approach to study the short-term effects of different restorative treatments on forest structure and regeneration in managed Picea abies stands in southern Finland. Restorative treatments consisted of a partial cut combined with three levels of coarse woody debris retention, and a fire/no-fire treatment. In addition, we examined burned and unburned reference stands without cutting treatments. Results from near-natural Picea abies forests emphasize the dynamic character of old-growth forests, the variety of late-successional forest structures, and the fact that extended time periods are needed to attain certain late-successional stages with specific structural and habitat attributes, such as large-diameter deciduous trees and a variety of deadwood. The results from old Pinus sylvestris-dominated forests showed that human impact in the form of forest utilization and fire exclusion has strongly modified and reduced the structural complexity of stands. Consequently, small protected forest fragments in Finland may not serve as valid natural reference areas for forest restoration. However, results from the restoration experiment showed that early-successional natural stand characteristics can be restored to structurally impoverished managed Picea abies stands, despite a significant portion of wood volume being harvested. A variety of restoration methods is needed, due to differences in the condition of the forest when restoration is initiated and the variety of successional stages of forest structures after anthropogenic and natural disturbances. Keywords: dead wood, disturbance dynamic, fire, near-natural stand, rehabilitation, succession