8 resultados para ELECTROLYTE MEMBRANES
em Helda - Digital Repository of University of Helsinki
Resumo:
All positive-strand RNA viruses utilize cellular membranes for the assembly of their replication complexes, which results in extensive membrane modification in infected host cells. These alterations act as structural and functional scaffolds for RNA replication, providing protection for the viral double-stranded RNA against host defences. It is known that different positive-strand RNA viruses alter different cellular membranes. However, the origin of the targeted membranes, the mechanisms that direct replication proteins to specific membranes and the steps in the formation of the membrane bound replication complex are not completely understood. Alphaviruses (including Semliki Forest virus, SFV), members of family Togaviridae, replicate their RNA in association with membranes derived from the endosomal and lysosomal compartment, inducing membrane invaginations called spherules. Spherule structures have been shown to be the specific sites for RNA synthesis. Four replication proteins, nsP1-nsP4, are translated as a polyprotein (P1234) which is processed autocatalytically and gives rise to a membrane-bound replication complex. Membrane binding is mediated via nsP1 which possesses an amphipathic α-helix (binding peptide) in the central region of the protein. The aim of this thesis was to characterize the association of the SFV replication complex with cellular membranes and the modification of the membranes during virus infection. Therefore, it was necessary to set up the system for determining which viral components are needed for inducing the spherules. In addition, the targeting of the replication complex, the formation site of the spherules and their intracellular trafficking were studied in detail. The results of current work demonstrate that mutations in the binding peptide region of nsP1 are lethal for virus replication and change the localization of the polyprotein precursor P123. The replication complex is first targeted to the plasma membrane where membrane invaginations, spherules, are induced. Using a specific regulated endocytosis event the spherules are internalized from the plasma membrane in neutral carrier vesicles and transported via an actin-and microtubule-dependent manner to the pericentriolar area. Homotypic fusions and fusions with pre-existing acidic organelles lead to the maturation of previously described cytopathic vacuoles with hundreds of spherules on their limiting membranes. This work provides new insights into the membrane binding mechanism of SFV replication complex and its role in the virus life cycle. Development of plasmid-driven system for studying the formation of the replication complex described in this thesis allows various applications to address different steps in SFV life cycle and virus-host interactions in the future. This trans-replication system could be applied for many different viruses. In addition, the current work brings up new aspects of membranes and cellular components involved in SFV replication leading to further understanding in the formation and dynamics of the membrane-associated replication complex.
Resumo:
Several studies link the consumption of whole-grain products to a lowered risk of chronic diseases, such as certain types of cancer, type II diabetes, and cardiovascular diseases. However, the final conclusions of the exact protective mechanisms remain unclear, partly due to a lack of a suitable biomarker for the whole-grain cereals intake. Alkylresorcinols (AR) are phenolic lipids abundant in the outer parts of wheat and rye grains usually with homologues of C15:0- C25:0 alkyl chains, and are suggested to function as whole-grain biomarkers. Mammalian lignan enterolactone has also previously been studied as a potential whole-grain biomarker. In the present work a quantified gas chromatography-mass spectrometry method for the analysis of AR in plasma, erythrocytes, and lipoproteins was developed. The method was used to determine human and pig plasma AR concentrations after the intake of whole-grain wheat and rye products compared to low-fibre wheat bread diets to assess the usability of AR as biomarkers of whole-grain intake. AR plasma concentrations were compared to serum ENL concentrations. AR absorption and elimination kinetics were investigated in a pig model. AR occurrence in human erythrocyte membranes and plasma lipoproteins were determined, and the distribution of AR in blood was evaluated. Plasma AR seem to be absorbed via the lymphatic system from the small intestine, like many other lipophilic compounds. Their apparent elimination half-life is relatively short and is similar to that of tocopherols, which have a similar chemical structure. Plasma AR concentrations increased significantly after a one- to eight-week intake of whole-grain wheat and further on with whole-grain rye bread. The concentrations were also higher after habitual Finnish diet compared to diet with low-fibre bread. Inter-individual variation after a one-week intake of the same amount of bread was high, but the mean plasma AR concentrations increased with increasing AR intake. AR are incorporated into erythrocyte membranes and plasma lipoproteins, and VLDL and HDL were the main AR carriers in human plasma. Based on these studies, plasma AR could function as specific biomarkers of dietary whole-grain products. AR are exclusively found in whole-grains and are more suitable as specific biomarkers of whole-grain intake than previously investigated mammalian lignan enterolactone, that is formed from several plants other than cereals in the diet. Plasma AR C17:0/C21:0 -ratio could distinguish whether whole-grain products in the diet are mainly wheat or rye. AR could be used in epidemiological studies to determine whole-grain intake and to better assess the role of whole-grains in disease prevention.
Resumo:
Biological membranes are tightly linked to the evolution of life, because they provide a way to concentrate molecules into partially closed compartments. The dynamic shaping of cellular membranes is essential for many physiological processes, including cell morphogenesis, motility, cytokinesis, endocytosis, and secretion. It is therefore essential to understand the structure of the membrane and recognize the players that directly sculpt the membrane and enable it to adopt different shapes. The actin cytoskeleton provides the force to push eukaryotic plasma membrane in order to form different protrusions or/and invaginations. It has now became evident that actin directly co-operates with many membrane sculptors, including BAR domain proteins, in these important events. However, the molecular mechanisms behind BAR domain function and the differences between the members of this large protein family remain largely unresolved. In this thesis, the structure and functions of the I-BAR domain family members IRSp53 and MIM were thoroughly analyzed. By using several methods such as electron microscopy and systematic mutagenesis, we showed that these I-BAR domain proteins bind to PI(4,5)P2-rich membranes, generate negative membrane curvature and are involved in the formation of plasma membrane protrusions in cells e.g. filopodia. Importantly, we characterized a novel member of the BAR-domain superfamily which we named Pinkbar. We revealed that Pinkbar is specifically expressed in kidney and epithelial cells, and it localizes to Rab13-positive vesicles in intestinal epithelial cells. Remarkably, we learned that the I-BAR domain of Pinkbar does not generate membrane curvature but instead stabilizes planar membranes. Based on structural, mutagenesis and biochemical work we present a model for the mechanism of the novel membrane deforming activity of Pinkbar. Collectively, this work describes the mechanism by which I-BAR domain proteins deform membranes and provides new information about the biological roles of these proteins. Intriguingly, this work also gives evidence that significant functional plasticity exists within the I-BAR domain family. I-BAR proteins can either generate negative membrane curvature or stabilize planar membrane sheets, depending on the specific structural properties of their I-BAR domains. The results presented in this thesis expand our knowledge on membrane sculpting mechanisms and shows for the first time how flat membranes can be generated in cells.