6 resultados para Dispersive liquid–liquid microextraction
em Helda - Digital Repository of University of Helsinki
Resumo:
The surface properties of solid state pharmaceutics are of critical importance. Processing modifies the surfaces and effects surface roughness, which influences the performance of the final dosage form in many different levels. Surface roughness has an effect on, e.g., the properties of powders, tablet compression and tablet coating. The overall goal of this research was to understand the surface structures of pharmaceutical surfaces. In this context the specific purpose was to compare four different analysing techniques (optical microscopy, scanning electron microscopy, laser profilometry and atomic force microscopy) in various pharmaceutical applications where the surfaces have quite different roughness scale. This was done by comparing the image and roughness analysing techniques using powder compacts, coated tablets and crystal surfaces as model surfaces. It was found that optical microscopy was still a very efficient technique, as it yielded information that SEM and AFM imaging are not able to provide. Roughness measurements complemented the image data and gave quantitative information about height differences. AFM roughness data represents the roughness of only a small part of the surface and therefore needs other methods like laser profilometer are needed to provide a larger scale description of the surface. The new developed roughness analysing method visualised surface roughness by giving detailed roughness maps, which showed local variations in surface roughness values. The method was able to provide a picture of the surface heterogeneity and the scale of the roughness. In the coating study, the laser profilometer results showed that the increase in surface roughness was largest during the first 30 minutes of coating when the surface was not yet fully covered with coating. The SEM images and the dispersive X-ray analysis results showed that the surface was fully covered with coating within 15 to 30 minutes. The combination of the different measurement techniques made it possible to follow the change of surface roughness and development of polymer coating. The optical imaging techniques gave a good overview of processes affecting the whole crystal surface, but they lacked the resolution to see small nanometer scale processes. AFM was used to visualize the nanoscale effects of cleaving and reveal the full surface heterogeneity, which underlies the optical imaging. Ethanol washing changed small (nanoscale) structure to some extent, but the effect of ethanol washing on the larger scale was small. Water washing caused total reformation of the surface structure at all levels.
Resumo:
The feasibility of different modern analytical techniques for the mass spectrometric detection of anabolic androgenic steroids (AAS) in human urine was examined in order to enhance the prevalent analytics and to find reasonable strategies for effective sports drug testing. A comparative study of the sensitivity and specificity between gas chromatography (GC) combined with low (LRMS) and high resolution mass spectrometry (HRMS) in screening of AAS was carried out with four metabolites of methandienone. Measurements were done in selected ion monitoring mode with HRMS using a mass resolution of 5000. With HRMS the detection limits were considerably lower than with LRMS, enabling detection of steroids at low 0.2-0.5 ng/ml levels. However, also with HRMS, the biological background hampered the detection of some steroids. The applicability of liquid-phase microextraction (LPME) was studied with metabolites of fluoxymesterone, 4-chlorodehydromethyltestosterone, stanozolol and danazol. Factors affecting the extraction process were studied and a novel LPME method with in-fiber silylation was developed and validated for GC/MS analysis of the danazol metabolite. The method allowed precise, selective and sensitive analysis of the metabolite and enabled simultaneous filtration, extraction, enrichment and derivatization of the analyte from urine without any other steps in sample preparation. Liquid chromatographic/tandem mass spectrometric (LC/MS/MS) methods utilizing electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were developed and applied for detection of oxandrolone and metabolites of stanozolol and 4-chlorodehydromethyltestosterone in urine. All methods exhibited high sensitivity and specificity. ESI showed, however, the best applicability, and a LC/ESI-MS/MS method for routine screening of nine 17-alkyl-substituted AAS was thus developed enabling fast and precise measurement of all analytes with detection limits below 2 ng/ml. The potential of chemometrics to resolve complex GC/MS data was demonstrated with samples prepared for AAS screening. Acquired full scan spectral data (m/z 40-700) were processed by the OSCAR algorithm (Optimization by Stepwise Constraints of Alternating Regression). The deconvolution process was able to dig out from a GC/MS run more than the double number of components as compared with the number of visible chromatographic peaks. Severely overlapping components, as well as components hidden in the chromatographic background could be isolated successfully. All studied techniques proved to be useful analytical tools to improve detection of AAS in urine. Superiority of different procedures is, however, compound-dependent and different techniques complement each other.
Resumo:
Väitöskirjani käsittele mikrobien ja erilaisten kemikaalien rooleja saostumien ja biofilmien muodostumisessa paperi- ja kartonkikoneilla. "Saostuma" tässä työssä tarkoittaa kiinteän aineen kertymää konepinnoille tai rajapinnoille konekierroissa, jotka on tarkoitettu massasulppujen, lietteiden, vesien tai ilman kuljetukseen. Saostumasta tulee "biofilmi" silloin kun sen oleellinen rakennekomponentti on mikrobisolut tai niiden tuotteet. Väitöstyöni työhypoteesina oli, että i. tietämys saostumien koostumuksesta, sekä ii. niiden rakenteesta, biologisista, fysikaalis-kemiallisista ja teknisistä ominaisuuksista ohjaavat tutkijaa löytämään ympäristöä säästäviä keinoja estää epätoivottujen saostumien muodostus tai purkaa jo muodostuneita saostumia. Selvittääkseni saostumien koostumista ja rakennetta käytin monia erilaisia analytiikan työkaluja, kuten elektronimikroskopiaa, konfokaali-laser mikroskopiaa (CLSM), energiadispersiivistä röntgenanalyysiä (EDX), pyrolyysi kaasukromatografiaa yhdistettynä massaspektrometriaan (Py-GCMS), joninvaihtokromatografiaa, kaasukromatografiaa ja mikrobiologisia analyysejä. Osallistuin aktiivisesti innovatiivisen, valon takaisinsirontaan perustuvan sensorin kehittämistyöhön, käytettäväksi biofilmin kasvun mittaukseen suoraan koneen vesikierroista ja säiliöistä. Työni osoitti, että monet paperinvalmistuksessa käytetyistä kemikaaleista reagoivat keskenään tuottaen orgaanisia tahmakerroksia konekiertojen teräspinnoille. Löysin myös kerrostumia, jotka valomikroskooppisessa tarkastelussa oli tulkittu mikrobeiksi, mutta jotka elektronimikroskopia paljasti alunasta syntyneiksi, alumiinihydroksidiksi joka saostui pH:ssa 6,8 kiertokuitua käyttävän koneen viiravesistä. Monet paperintekijät käyttävät vieläkin alunaa kiinnitysaineena vaikka prosessiolot ovat muuttuneet happamista neutraaleiksi. Sitä pidetään paperitekijän "aspiriinina", mutta väitöstutkimukseni osoitti sen riskit. Löysin myös orgaanisia saostumia, joiden alkuperä oli aineiden, kuten pihkan, saippuoituminen (kalsium saippuat) niin että muodostui tahmankasvua ylläpitävä alusta monilla paperi- ja kartonkikoneilla. Näin solumuodoiltaan Deinococcus geothermalista muistuttavia bakteereita kasvamassa lujasti teräskoepalojen pintaan kiinnittyneinä pesäkkeinä, kun koepaloja upotettiin paperikoneiden vesikiertoihin. Nämä deinokokkimaiset pesäkkeet voivat toimia jalustana, tarttumisalustana muiden mikrobien massoille, joka selittäisi miksi saostumat yleisesti sisältävät deinokokkeja pienenä, muttei koskaan pääasiallisena rakenneosana. Kun paperikoneiden käyttämien vesien (raakavedet, lämminvesi, biologisesti puhdistettu jätevesi) laatua tutkitaan, mittausmenetelmällä on suuri merkitys. Koepalan upotusmenetelmällä todettu biofilmikasvu ja viljelmenetelmällä mitattu bakteerisaastuneisuus korreloivat toisiinsa huonosti etenkin silloin kun likaantumisessa oli mukana rihmamaiseti kasvavia bakteereja. Huoli ympäristöstä on pakottanut paperi- ja kartonkikoneiden vesikiertojen sulkemiseen. Vesien kierrätys ja prosessivesien uudelleenkäyttö nostavat prosessilämpötilaa ja lisäävät koneella kiertävien kolloidisten ja liuenneiden aineiden määriä. Tutkin kiertovesien pitoisuuksia kolmessa eriasteisesti suljetussa tehtaassa, joiden päästöt olivat 0 m3, 0,5 m3 ja 4 m3 jätevettä tuotetonnia kohden, perustuen puhdistetun jäteveden uudelleen käyttöön. Nollapäästöisellä tehtaalla kiertovesiin kertyi paljon orgaanisesti sidottua hiiltä (> 10 g L-1), etenkin haihtuvina happoina (maito-, etikka-, propioni- ja voi-). Myös sulfaatteja, klorideja, natriumia ja kalsiumia kertyi paljon, > 1 g L-1 kutakin. Pääosa (>40%) kaikista bakteereista oli 16S rRNA geenisekvenssianalyysien tulosten perusteella sukua, joskin etäistä (< 96%) ainoastaan Enterococcus cecorum bakteerille. 4 m3 päästävältä tehtaalta löytyi lisäksi Bacillus thermoamylovorans ja Bacillus coagulans. Tehtaiden saostumat sisälsivät arkkeja suurina pitoisuuksina, ≥ 108 g-1, mutta tunnistukseen riittävää sekvenssisamanlaisuutta löytyi vain yhteen arkkisukuun, Methanothrix. Tutkimustulokset osoittivat että tehtaan vesikiertojen sulkeminen vähensi rajusti mikrobiston monimuotoisuutta, muttei estänyt liuenneen aineen ja kiintoaineen mineralisoitumista.
Resumo:
The research reported in this thesis dealt with single crystals of thallium bromide grown for gamma-ray detector applications. The crystals were used to fabricate room temperature gamma-ray detectors. Routinely produced TlBr detectors often are poor quality. Therefore, this study concentrated on developing the manufacturing processes for TlBr detectors and methods of characterisation that can be used for optimisation of TlBr purity and crystal quality. The processes under concern were TlBr raw material purification, crystal growth, annealing and detector fabrication. The study focused on single crystals of TlBr grown from material purified by a hydrothermal recrystallisation method. In addition, hydrothermal conditions for synthesis, recrystallisation, crystal growth and annealing of TlBr crystals were examined. The final manufacturing process presented in this thesis deals with TlBr material purified by the Bridgman method. Then, material is hydrothermally recrystallised in pure water. A travelling molten zone (TMZ) method is used for additional purification of the recrystallised product and then for the final crystal growth. Subsequent processing is similar to that described in the literature. In this thesis, literature on improving quality of TlBr material/crystal and detector performance is reviewed. Aging aspects as well as the influence of different factors (temperature, time, electrode material and so on) on detector stability are considered and examined. The results of the process development are summarised and discussed. This thesis shows the considerable improvement in the charge carrier properties of a detector due to additional purification by hydrothermal recrystallisation. As an example, a thick (4 mm) TlBr detector produced by the process was fabricated and found to operate successfully in gamma-ray detection, confirming the validity of the proposed purification and technological steps. However, for the complete improvement of detector performance, further developments in crystal growth are required. The detector manufacturing process was optimized by characterisation of material and crystals using methods such as X-ray diffraction (XRD), polarisation microscopy, high-resolution inductively coupled plasma mass (HR-ICPM), Fourier transform infrared (FTIR), ultraviolet and visual (UV-Vis) spectroscopy, field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDS), current-voltage (I-V) and capacity voltage (CV) characterisation, and photoconductivity, as well direct detector examination.
Resumo:
Most studies of life history evolution are based on the assumption that species exist at equilibrium and spatially distinct separated populations. In reality, this is rarely the case, as populations are often spatially structured with ephemeral local populations. Therefore, the characteristics of metapopulations should be considered while studying factors affecting life history evolution. Theoretical studies have examined spatial processes shaping the evolution of life history traits to some extent, but there is little empirical data and evidence to investigate model predictions. In my thesis I have tried to bridge the gap between theoretical and empirical studies by using the well-known Glanville fritillary (Melitaea cinxia) metapopulation as a model system. The long-term persistence of classic metapopulations requires sufficient dispersal to establish new local populations to compensate for local extinctions. Previous studies on the Glanville fritillary have shown that females establishing new populations are not a random sample from the metapopulation, but they are in fact more dispersive than females in old populations. Many other life-history traits, such as body size, fecundity and lifespan, may be related to dispersal rate. Therefore, I examined a range of correlated traits for their evolutionary and ecological consequences. I was particularly interested in how the traits vary under natural environmental conditions, hence all studies were conducted in a large (32 x 26 m) outdoor population cage built upon a natural habitat patch. Individuals for the experiments were sampled from newly-established and old populations within a large metapopulation. Results show that females originating from newly-established populations had higher within-habitat patch mobility than females from old populations. I showed that dispersal rate is heritable and that flight activity is related to variation in a gene encoding the glycolytic enzyme phosphoglucose isomerase. Both among-individual and among-population variation in dispersal are correlated with the reproductive performance of females, though I found no evidence for a trade-off between dispersal and fecundity in terms of lifetime egg production or clutch size. Instead, the results suggest that highly dispersive females from newly-established populations have a shorter lifespan than females from old populations, and that dispersive females may pay a cost in terms of reduced lifetime reproductive success due to increased time spent outside habitat patches. In summary, the results of this thesis show that genotype-dependent dispersal rate correlates with other life history traits in the Glanville fritillary, and that the rapid turnover of local populations (extinctions and re-colonisations) is likely to be the mechanism that maintains phenotypic variation in many life history traits at the metapopulation level.
Resumo:
This thesis comprises four intercomplementary parts that introduce new approaches to brittle reaction layers and mechanical compatibility of metalloceramic joints created when fusing dental ceramics to titanium. Several different methods including atomic layer deposition (ALD), sessile drop contact angle measurements, scanning acoustic microscopy (SAM), three-point bending (TPB, DIN 13 927 / ISO 9693), cross-section microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS) were employed. The first part investigates the effects of TiO2 layer structure and thickness on the joint strength of the titanium-metalloceramic system. Samples with all tested TiO2 thicknesses displayed good ceramics adhesion to Ti, and uniform TPB results. The fracture mode was independent of oxide layer thickness and structure. Cracking occurred deeper inside titanium, in the oxygen-rich Ti[O]x solid solution surface layer. During dental ceramics firing TiO2 layers dissociate and joints become brittle with increased dissolution of oxygen into metallic Ti and consequent reduction in the metal plasticity. To accomplish an ideal metalloceramic joint this needs to be resolved. The second part introduces photoinduced superhydrophilicity of TiO2. Test samples with ALD deposited anatase TiO2 films were produced. Samples were irradiated with UV light to induce superhydrophilicity of the surfaces through a cascade leading to increased amount of surface hydroxyl groups. Superhydrophilicity (contact angle ~0˚) was achieved within 2 minutes of UV radiation. Partial recovery of the contact angle was observed during the first 10 minutes after UV exposure. Total recovery was not observed within 24h storage. Photoinduced ultrahydrophilicity can be used to enhance wettability of titanium surfaces, an important factor in dental ceramics veneering processes. The third part addresses interlayers designed to restrain oxygen dissolution into Ti during dental ceramics fusing. The main requirements for an ideal interlayer material are proposed. Based on these criteria and systematic exclusion of possible interlayer materials silver (Ag) interlayers were chosen. TPB results were significantly better in when 5 μm Ag interlayers were used compared to only Al2O3-blasted samples. In samples with these Ag interlayers multiple cracks occurred inside dental ceramics, none inside Ti structure. Ag interlayers of 5 μm on Al2O3-blasted samples can be efficiently used to retard formation of the brittle oxygen-rich Ti[O]x layer, thus enhancing metalloceramic joint integrity. The most brittle component in metalloceramic joints with 5 μm Ag interlayers was bulk dental ceramics instead of Ti[O]x. The fourth part investigates the importance of mechanical interlocking. According to the results, the significance of mechanical interlocking achieved by conventional surface treatments can be questioned as long as the formation of the brittle layers (mainly oxygen-rich Ti[O]x) cannot be sufficiently controlled. In summary in contrast to former impressions of thick titanium oxide layers this thesis clearly demonstrates diffusion of oxygen from sintering atmosphere and SiO2 to Ti structures during dental ceramics firing and the following formation of brittle Ti[O]x solid solution as the most important factors predisposing joints between Ti and SiO2-based dental ceramics to low strength. This among other predisposing factors such as residual stresses created by the coefficient of thermal expansion mismatch between dental ceramics and Ti frameworks can be avoided with Ag interlayers.