12 resultados para Diastolic Dysfunction
em Helda - Digital Repository of University of Helsinki
Resumo:
Type 2 diabetes is a risk factor for the development of cardiovascular disease. Recently, the term diabetic cardiomyopathy has been proposed to describe the changes in the heart that occur in response to chronic hyperglycemia and insulin resistance. Ventricular remodelling in diabetic cardiomyopathy includes left ventricular hypertrophy, increased interstitial fibrosis, apoptosis and diastolic dysfunction. Mechanisms behind these changes are increased oxidative stress and renin-angiotensin system activation. The diabetic Goto-Kakizaki rat is a non-obese model of type 2 diabetes that exhibits defective insulin signalling. Recently two interconnected stress response pathways have been discovered that link insulin signalling, longevity, apoptosis and cardiomyocyte hypertrophy. The insulin-receptor PI3K/Ak pathway inhibits proapoptotic FOXO3a in response to insulin signalling and the nuclear Sirt1 deacetylase inhibits proapoptotic p53 and modulates FOXO3a in favour of survival and growth. --- Levosimendan is a calcium sensitizing agent used for the management of acute decompensated heart failure. Levosimendan acts as a positive inotrope by sensitizing cardiac troponin C to calcium and exerts vasodilation by opening mitochondrial and sarcolemmal ATP-sensitive potassium channels. Levosimendan has been described to have beneficial effects in ventricular remodelling after myocardial infarction. The aims of the study were to characterize whether diabetic cardiomyopathy associates with cardiac dysfunction, cardiomyocyte apoptosis, hypertrophy and fibrosis in spontaneously diabetic Goto-Kakizaki (GK) rats, which were used to model type 2 diabetes. Protein expression and activation of the Akt FOXO3a and Sirt1 p53 pathways were examined in the development of ventricular remodelling in GK rats with and without myocardial infarction (MI). The third and fourth studies examined the effects of levosimendan on ventricular remodelling and gene expression in post-MI GK rats. The results demonstrated that diabetic GK rats develop both modest hypertension and features similar to diabetic cardiomyopathy including cardiac dysfunction, LV hypertrophy and fibrosis and increased apoptotic signalling. MI induced a sustained increase in cardiomyocyte apoptosis in GK rats together with aggravated LV hypertrophy and fibrosis. The GK rat myocardium exhibited decreased Akt- FOXO3a phosphorylation and increased nuclear translocation of FOXO3a and overproduction of the Sirt1 protein. Treatment with levosimendan decreased cardiomyocyte apoptosis, senescence and LV hypertrophy and altered the gene expression profile in GK rat myocardium. The findings indicate that impaired cardioprotection via Akt FOXO3a and p38 MAPK is associated with increased apoptosis, whereas Sirt1 functions in counteracting apoptosis and the development of LV hypertrophy in the GK rat myocardium. Overall, levosimendan treatment protects against post-MI ventricular remodelling and alters the gene expression profile in the GK rat myocardium.
Resumo:
Sydämen vajaatoiminta on erilaisista sydän- ja verisuonisairauksista aiheutuva monimuotoinen oireyhtymä, johon sairastuneiden ja kuolleiden potilaiden määrä on yhä suuri. Sen patofysiologiaan voi kuulua muun muassa sympaattisen hermoston ja reniini-angiotensiini-aldosteroni–järjestelmän aktiivisuutta, huonosti supistuva vasen kammio, sydämen uudelleenmuokkautumista, muutoksia [Ca2+]i:n säätelyssä, kardiomyosyyttien apoptoosia sekä systeeminen tulehdustila. Johonkin osaan sairauden patofysiologiasta eivät nykyiset lääkehoidot riittävästi vaikuta. Klassiset inotroopit lisäävät sydämen supistusvireyttä kasvattamalla solunsisäistä Ca2+-pitoisuutta, mutta ne lisäävät rytmihäiriöriskiä, sydämen hapenkulutusta sekä heikentävät ennustetta. Levosimendaani, kalsiumherkistäjä, lisää sydämen supistusvoimaa [Ca2+]i:ta kohottamatta herkistämällä sydänlihaksen kalsiumin vaikutuksille. Lisäksi levosimendaani avaa sarkolemmaalisia ja mitokondriaalisia K+-kanavia, jotka välittävät vasodilataatiota ja kardioprotektiota. Suurilla annoksilla levosimendaani on selektiivinen PDE3-estäjä. Levosimendaania suositellaan äkillisesti pahentuneen sydämen vajaatoiminnan hoitoon, mutta muitakin lupaavia indikaatioita sille on keksitty. Esimerkiksi kroonisesti annosteltu oraalinen levosimendaani on suojannut kardiovaskulaarijärjestelmää ja parantanut selviytymistä in vivo. Erikoistyössä selvitettiin kroonisesti annostellun oraalisen levosimendaanin, valsartaanin ja näiden kombinaatioterapian vaikutuksia selviytymiseen, verenpaineeseen sekä sydämen hypertrofioitumiseen Dahlin suolaherkillä (Dahl/Rapp) rotilla. Levosimendaanin suojavaikutus ilmeni vähäisempänä kuolleisuutena, mutta ero ei ollut tilastollisesti merkitsevä kontrolliryhmään nähden. Kombinaatioterapia suojasi rottia kardiovaskulaarikuolleisuudelta ja vähensi todennäköisesti verenpaineesta riippuvaisesti sydämen hypertofioitumista niin sydän/kehonpaino–suhteen kuin ultraäänitutkimuksenkin perusteella arvioituna paremmin kuin kumpikaan lääke monoterapiana. Lääkekombinaatio alensi additiivisesti hypertensiota kaikissa mittauspisteissä. Sydämen systolista toimintaa levosimendaani kohensi vain vähäisesti. Dahl/Rapp-rotille kehittyikin pääosin hypertension indusoimaa diastolista sydämen vajaatoimintaa kohonneen IVRT-arvon perusteella. Levosimendaani sekä monoterapiana että kombinaatioterapiana valsartaanin kanssa vähensi sydämen diastolista vajaatoimintaa.
Resumo:
Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder in which the cardinal symptoms arise from exocrine pancreatic insufficiency and bone marrow dysfunction. Previous studies have suggested increased risk of fatal complications among Finnish SDS infants. The genetic defect responsible for the disease was recently identified; the SBDS gene is located at chromosome 7q11 and encodes a protein that is involved in ribosome biosynthesis. The discovery of the SBDS gene has opened new insights into the pathogenesis of this multi-organ disease. This study aimed to assess phenotypic and genotypic features of Finnish patients with SDS. Seventeen Finnish patients with a clinical diagnosis of SDS were included in the study cohort. Extensive clinical, biochemical and imaging assessments were performed to elucidate the phenotypic features, and the findings were correlated with the SBDS genotype. Imaging studies included abdominal magnetic reso-nance imaging (MRI), brain MRI, cardiac echocardiography including tissue Doppler examination, and cardiac MRI. The skeletal phenotype was assessed by dual-energy X-ray absorptiometry and bone histomorphometry. Twelve patients had mutations in the SBDS gene. In MRI, a characteristic pattern of fat-replaced pancreas with occasional enhancement of scattered parenchymal foci and of pancreatic duct was noted in the SBDS mutation-positive patients while the mutation-negative patients did not have pancreatic fat accumulation. The patients with SBDS mutations had significantly reduced bone mineral density associated with low-energy peripheral fractures and vertebral compression fractures. Bone histomorphometry confirmed low-turnover osteoporosis. The patients with SBDS mutations had learning difficulties and smaller head size and brain volume than control subjects. Corpus callosum, cerebellar vermis, and pos-terior fossa structures were significantly smaller in SDS patients than in controls. Patients with SDS did not have evidence of clinical heart disease or myocardial fibrosis. However, subtle diastolic changes in the right ventricle and exercise-induced changes in the left ventricle contractile reserve were observed. This study expanded the phenotypic features of SDS to include primary low-turnover osteoporosis and structural alterations in the brain. Pancreatic MRI showed characteristic changes in the SBDS mutation-positive patients while these were absent in the mutation-negative patients, suggesting that MRI can be used to differentiate patients harbouring SBDS mutations from those without mutations. No evidence for clinical cardiac manifestations was found, but imaging studies revealed slightly altered myocardial function that may have clinical implications. These findings confirm the pleiotropic nature of SDS and underscore the importance of careful multidisciplinary follow-up of the affected individuals.
Resumo:
Drugs and surgical techniques may have harmful renal effects during the perioperative period. Traditional biomarkers are often insensitive to minor renal changes, but novel biomarkers may more accurately detect disturbances in glomerular and tubular function and integrity. The purpose of this study was first, to evaluate the renal effects of ketorolac and clonidine during inhalation anesthesia with sevoflurane and isoflurane, and secondly, to evaluate the effect of tobacco smoking on the production of inorganic fluoride (F-) following enflurane and sevoflurane anesthesia as well as to determine the effect of F- on renal function and cellular integrity in surgical patients. A total of 143 patients undergoing either conventional (n = 75) or endoscopic (n = 68) inpatient surgery were enrolled in four studies. The ketorolac and clonidine studies were prospective, randomized, placebo controlled and double-blinded, while the cigarette smoking studies were prospective cohort studies with two parallel groups. As a sign of proximal tubular deterioration, a similar transient increase in urine N-acetyl-beta-D-glucosaminidase/creatinine (U-NAG/crea) was noted in both the ketorolac group and in the controls (baseline vs. at two hours of anesthesia, p = 0.015) with a 3.3 minimum alveolar concentration hour sevoflurane anesthesia. Uncorrelated U-NAG increased above the maximum concentration measured from healthy volunteers (6.1 units/l) in 5/15 patients with ketorolac and in none of the controls (p = 0.042). As a sign of proximal tubular deterioration, U-glutathione transferase-alpha/crea (U-GST-alpha/crea) increased in both groups at two hours after anesthesia but a more significant increase was noted in the patients with ketorolac. U-GST-alpha/crea increased above the maximum ratio measured from healthy volunteers in 7/15 patients with ketorolac and in 3/15 controls. Clonidine diminished the activation of the renin-angiotensin aldosterone system during pneumoperitoneum; urine output was better preserved in the patients treated with clonidine (1/15 patients developed oliguria) than in the controls (8/15 developed oliguria (p=0.005)). Most patients with pneumoperitoneum and isoflurane anesthesia developed a transient proximal tubular deterioration, as U-NAG increased above 6.1 units/L in 11/15 patients with clonidine and in 7/15 controls. In the patients receiving clonidine treatment, the median of U-NAG/crea was higher than in the controls at 60 minutes of pneumoperitoneum (p = 0.01), suggesting that clonidine seems to worsen proximal tubular deterioration. Smoking induced the metabolism of enflurane, but the renal function remained intact in both the smokers and the non-smokers with enflurane anesthesia. On the contrary, smoking did not induce sevoflurane metabolism, but glomerular function decreased in 4/25 non-smokers and in 7/25 smokers with sevoflurane anesthesia. All five patients with S-F- ≥ 40 micromol/L, but only 6/45 with S-F- less than 40 micromol/L (p = 0.001), developed a S-tumor associated trypsin inhibitor concentration above 3 nmol/L as a sign of glomerular dysfunction. As a sign of proximal tubulus deterioration, U-beta 2-microglobulin increased in 2/5 patients with S-F- over 40 micromol/L compared to 2/45 patients with the highest S-F- less than 40 micromol/L (p = 0.005). To conclude, sevoflurane anesthesia may cause a transient proximal tubular deterioration which may be worsened by a co-administration of ketorolac. Clonidine premedication prevents the activation of the renin-angiotensin aldosterone system and preserves normal urine output, but may be harmful for proximal tubules during pneumoperitoneum. Smoking induces the metabolism of enflurane but not that of sevoflurane. Serum F- of 40 micromol/L or higher may induce glomerular dysfunction and proximal tubulus deterioration in patients with sevoflurane anesthesia. The novel renal biomarkers warrant further studies in order to establish reference values for surgical patients having inhalation anesthesia.
Resumo:
Background. Kidney transplantation (KTX) is considered to be the best treatment of terminal uremia. Despite improvements in short-term graft survival, a considerable number of kidney allografts are lost due to the premature death of patients with a functional kidney and to chronic allograft nephropathy (CAN). Aim. To investigate the risk factors involved in the progression of CAN and to analyze diagnostic methods for this entity. Materials and methods. Altogether, 153 implant and 364 protocol biopsies obtained between June 1996 and April 2008 were analyzed. The biopsies were classified according to Banff ’97 and chronic allograft damage index (CADI). Immunohistochemistry for TGF-β1 was performed in 49 biopsies. Kidney function was evaluated by creatinine and/or cystatin C measurement and by various estimates of glomerular filtration rate (GFR). Demographic data of the donors and recipients were recorded after 2 years’ follow-up. Results. Most of the 3-month biopsies (73%) were nearly normal. The mean CADI score in the 6-month biopsies decreased significantly after 2001. Diastolic hypertension correlated with ΔCADI. Serum creatinine concentration at hospital discharge and glomerulosclerosis were risk factors for ΔCADI. High total and LDL cholesterol, low HDL and hypertension correlated with chronic histological changes. The mean age of the donors increased from 41 -52 years. Older donors were more often women who had died from an underlying disease. The prevalence of delayed graft function increased over the years, while acute rejections (AR) decreased significantly over the years. Sub-clinical AR was observed in 4% and it did not affect long-term allograft function or CADI. Recipients´ drug treatment was modified along the Studies, being mycophenolate mophetil, tacrolimus, statins and blockers of the renine-angiotensin-system more frequently prescribed after 2001. Patients with a higher ΔCADI had lower GFR during follow-up. CADI over 2 was best predicted by creatinine, although with modest sensitivity and specificity. Neither cystatin C nor other estimates of GFR were superior to creatinine for CADI prediction. Cyclosporine A toxicity was seldom seen. Low cyclosporin A concentration after 2 h correlated with TGF- β1 expression in interstitial inflammatory cells, and this predicted worse graft function. Conclusions. The progression of CAN has been affected by two major factors: the donors’ characteristics and the recipients’ hypertension. The increased prevalence of DGF might be a consequence of the acceptance of older donors who had died from an underlying disease. Implant biopsies proved to be of prognostic value, and they are essential for comparison with subsequent biopsies. The progression of histological damage was associated with hypertension and dyslipidemia. The augmented expression of TGF-β1 in inflammatory cells is unclear, but it may be related to low immunosuppression. Serum creatinine is the most suitable tool for monitoring kidney allograft function on every-day basis. However, protocol biopsies at 6 and 12 months predicted late kidney allograft dysfunction and affected the clinical management of the patients. Protocol biopsies are thus a suitable surrogate to be used in clinical trials and for monitoring kidney allografts.
Resumo:
Alternative pathway (AP) of complement can be activated on any surface, self or non-self. In atypical hemolytic uremic syndrome (aHUS) the AP regulation on self surfaces is insufficient and leads to complement attack against self-cells resulting usually in end-stage renal disease. Factor H (FH) is one of the key regulators of AP activation on the self surfaces. The domains 19 and 20 (FH19-20) are critical for the ability of FH to discriminate between C3b-opsonized self and non-self surfaces and are a hot-spot for mutations that have been described from aHUS patients. FH19-20 contains binding sites for both the C3d part of C3b and self surface polyanions that are needed for efficient C3b inactivation. To study the dysfunction of FH19-20, crystallographic structures of FH19-20 and FH19-20 in complex with C3d (FH19-20:C3d) were solved and aHUS-associated and structurally interesting point mutations were induced to FH19-20. Functional defects caused by these mutations were studied by analyzing binding of the FH19-20 mutant proteins to C3d, C3b, heparin, and mouse glomerular endothelial cells (mGEnCs). The results revealed two independent binding interfaces between FH19-20 and C3d - the FH19 site and the FH20 site. Superimposition of the FH19-20:C3d complex on the previously published C3b and FH1-4:C3b structures showed that the FH20 site on C3d is partially occluded, but the FH19 site is fully available. Furthermore, binding of FH19-20 via the FH19 site to C3b did not block binding of the functionally important FH1-4 domains and kept the FH20 site free to bind heparin or an additional C3d. Binding assays were used to show that FH20 domain can bind to heparin while FH19-20 is bound to C3b via the FH19 site, and that both the FH19 site and FH20 are necessary for recognition of non-activator surfaces. Simultaneous binding of FH19 site to C3b and FH20 to anionic self structures are the key interactions in self-surface recognition by FH and thereby enhanced avidity of FH explains how AP discriminates between self and non-self. The aHUS-associated mutations on FH19-20 were found to disrupt binding of the FH19 or FH20 site to C3d/C3b, or to disrupt binding of FH20 to heparin or mGEnC. Any of these dysfunctions leads to loss of FH avidity to C3b bearing self surfaces explaining the molecular pathogenesis of the aHUS-cases where mutations are found within FH19-20.
Resumo:
Hypertension is a major risk factor for stroke, ischaemic heart disease, and the development of heart failure. Hypertension-induced heart failure is usually preceded by the development of left ventricular hypertrophy (LVH), which represents an adaptive and compensatory response to the increased cardiac workload. Biomechanical stress and neurohumoral activation are the most important triggers of pathologic hypertrophy and the transition of cardiac hypertrophy to heart failure. Non-clinical and clinical studies have also revealed derangements of energy metabolism in hypertensive heart failure. The goal of this study was to investigate in experimental models the molecular mechanisms and signalling pathways involved in hypertension-induced heart failure with special emphasis on local renin-angiotensin-aldosterone system (RAAS), cardiac metabolism, and calcium sensitizers, a novel class of inotropic agents used currently in the treatment of acute decompensated heart failure. Two different animal models of hypertensive heart failure were used in the present study, i.e. hypertensive and salt-sensitive Dahl/Rapp rats on a high salt diet (a salt-sensitive model of hypertensive heart failure) and double transgenic rats (dTGR) harboring human renin and human angiotensinogen genes (a transgenic model of hypertensive heart failure with increased local RAAS activity). The influence of angiotensin II (Ang II) on cardiac substrate utilization and cardiac metabolomic profile was investigated by using gas chromatography coupled to time-of-flight mass spectrometry to detect 247 intermediary metabolites. It was found that Ang II could alter cardiac metabolomics both in normotensive and hypertensive rats in an Ang II receptor type 1 (AT1)-dependent manner. A distinct substrate use from fatty acid oxidation towards glycolysis was found in dTGR. Altered cardiac substrate utilization in dTGR was associated with mitochondrial dysfunction. Cardiac expression of the redox-sensitive metabolic sensor sirtuin1 (SIRT1) was increased in dTGR. Resveratrol supplementation prevented cardiovascular mortality and ameliorated Ang II-induced cardiac remodeling in dTGR via blood pressure-dependent pathways and mechanisms linked to increased mitochondrial biogenesis. Resveratrol dose-dependently increased SIRT1 activity in vitro. Oral levosimendan treatment was also found to improve survival and systolic function in dTGR via blood pressure-independent mechanisms, and ameliorate Ang II-induced coronary and cardiomyocyte damage. Finally, using Dahl/Rapp rats it was demonstrated that oral levosimendan as well as the AT1 receptor antagonist valsartan improved survival and prevented cardiac remodeling. The beneficial effects of levosimendan were associated with improved diastolic function without significantly improved systolic changes. These positive effects were potentiated when the drug combination was administered. In conclusion, the present study points to an important role for local RAAS in the pathophysiology of hypertension-induced heart failure as well as its involvement as a regulator of cardiac substrate utilization and mitochondrial function. Our findings suggest a therapeutic role for natural polyphenol resveratrol and calcium sensitizer, levosimendan, and the novel drug combination of valsartan and levosimendan, in prevention of hypertension-induced heart failure. The present study also provides a better understanding of the pathophysiology of hypertension-induced heart failure, and may help identify potential targets for novel therapeutic interventions.
Resumo:
Drug induced liver injury is one of the frequent reasons for the drug removal from the market. During the recent years there has been a pressure to develop more cost efficient, faster and easier ways to investigate drug-induced toxicity in order to recognize hepatotoxic drugs in the earlier phases of drug development. High Content Screening (HCS) instrument is an automated microscope equipped with image analysis software. It makes the image analysis faster and decreases the risk for an error caused by a person by analyzing the images always in the same way. Because the amount of drug and time needed in the analysis are smaller and multiple parameters can be analyzed from the same cells, the method should be more sensitive, effective and cheaper than the conventional assays in cytotoxicity testing. Liver cells are rich in mitochondria and many drugs target their toxicity to hepatocyte mitochondria. Mitochondria produce the majority of the ATP in the cell through oxidative phosphorylation. They maintain biochemical homeostasis in the cell and participate in cell death. Mitochondria is divided into two compartments by inner and outer mitochondrial membranes. The oxidative phosphorylation happens in the inner mitochondrial membrane. A part of the respiratory chain, a protein called cytochrome c, activates caspase cascades when released. This leads to apoptosis. The aim of this study was to implement, optimize and compare mitochondrial toxicity HCS assays in live cells and fixed cells in two cellular models: human HepG2 hepatoma cell line and rat primary hepatocytes. Three different hepato- and mitochondriatoxic drugs (staurosporine, rotenone and tolcapone) were used. Cells were treated with the drugs, incubated with the fluorescent probes and then the images were analyzed using Cellomics ArrayScan VTI reader. Finally the results obtained after optimizing methods were compared to each other and to the results of the conventional cytotoxicity assays, ATP and LDH measurements. After optimization the live cell method and rat primary hepatocytes were selected to be used in the experiments. Staurosporine was the most toxic of the three drugs and caused most damage to the cells most quickly. Rotenone was not that toxic, but the results were more reproducible and thus it would serve as a good positive control in the screening. Tolcapone was the least toxic. So far the conventional analysis of cytotoxicity worked better than the HCS methods. More optimization needs to be done to get the HCS method more sensitive. This was not possible in this study due to time limit.