7 resultados para DISTANCE MATRICES
em Helda - Digital Repository of University of Helsinki
Resumo:
Reorganizing a dataset so that its hidden structure can be observed is useful in any data analysis task. For example, detecting a regularity in a dataset helps us to interpret the data, compress the data, and explain the processes behind the data. We study datasets that come in the form of binary matrices (tables with 0s and 1s). Our goal is to develop automatic methods that bring out certain patterns by permuting the rows and columns. We concentrate on the following patterns in binary matrices: consecutive-ones (C1P), simultaneous consecutive-ones (SC1P), nestedness, k-nestedness, and bandedness. These patterns reflect specific types of interplay and variation between the rows and columns, such as continuity and hierarchies. Furthermore, their combinatorial properties are interlinked, which helps us to develop the theory of binary matrices and efficient algorithms. Indeed, we can detect all these patterns in a binary matrix efficiently, that is, in polynomial time in the size of the matrix. Since real-world datasets often contain noise and errors, we rarely witness perfect patterns. Therefore we also need to assess how far an input matrix is from a pattern: we count the number of flips (from 0s to 1s or vice versa) needed to bring out the perfect pattern in the matrix. Unfortunately, for most patterns it is an NP-complete problem to find the minimum distance to a matrix that has the perfect pattern, which means that the existence of a polynomial-time algorithm is unlikely. To find patterns in datasets with noise, we need methods that are noise-tolerant and work in practical time with large datasets. The theory of binary matrices gives rise to robust heuristics that have good performance with synthetic data and discover easily interpretable structures in real-world datasets: dialectical variation in the spoken Finnish language, division of European locations by the hierarchies found in mammal occurrences, and co-occuring groups in network data. In addition to determining the distance from a dataset to a pattern, we need to determine whether the pattern is significant or a mere occurrence of a random chance. To this end, we use significance testing: we deem a dataset significant if it appears exceptional when compared to datasets generated from a certain null hypothesis. After detecting a significant pattern in a dataset, it is up to domain experts to interpret the results in the terms of the application.
Resumo:
Time-dependent backgrounds in string theory provide a natural testing ground for physics concerning dynamical phenomena which cannot be reliably addressed in usual quantum field theories and cosmology. A good, tractable example to study is the rolling tachyon background, which describes the decay of an unstable brane in bosonic and supersymmetric Type II string theories. In this thesis I use boundary conformal field theory along with random matrix theory and Coulomb gas thermodynamics techniques to study open and closed string scattering amplitudes off the decaying brane. The calculation of the simplest example, the tree-level amplitude of n open strings, would give us the emission rate of the open strings. However, even this has been unknown. I will organize the open string scattering computations in a more coherent manner and will argue how to make further progress.
Resumo:
Despite thirty years of research in interorganizational networks and project business within the industrial networks approach and relationship marketing, collective capability of networks of business and other interorganizational actors has not been explicitly conceptualized and studied within the above-named approaches. This is despite the fact that the two approaches maintain that networking is one of the core strategies for the long-term survival of market actors. Recently, many scholars within the above-named approaches have emphasized that the survival of market actors is based on the strength of their networks and that inter-firm competition is being replaced by inter-network competition. Furthermore, project business is characterized by the building of goal-oriented, temporary networks whose aims, structures, and procedures are clarified and that are governed by processes of interaction as well as recurrent contracts. This study develops frameworks for studying and analysing collective network capability, i.e. collective capability created for the network of firms. The concept is first justified and positioned within the industrial networks, project business, and relationship marketing schools. An eclectic source of conceptual input is based on four major approaches to interorganizational business relationships. The study uses qualitative research and analysis, and the case report analyses the empirical phenomenon using a large number of qualitative techniques: tables, diagrams, network models, matrices etc. The study shows the high level of uniqueness and complexity of international project business. While perceived psychic distance between the parties may be small due to previous project experiences and the benefit of existing relationships, a varied number of critical events develop due to the economic and local context of the recipient country as well as the coordination demands of the large number of involved actors. The study shows that the successful creation of collective network capability led to the success of the network for the studied project. The processes and structures for creating collective network capability are encapsulated in a model of governance factors for interorganizational networks. The theoretical and management implications are summarized in seven propositions. The core implication is that project business success in unique and complex environments is achieved by accessing the capabilities of a network of actors, and project management in such environments should be built on both contractual and cooperative procedures with local recipient country parties.
Resumo:
In this article we introduce and evaluate testing procedures for specifying the number k of nearest neighbours in the weights matrix of spatial econometric models. The spatial J-test is used for specification search. Two testing procedures are suggested: an increasing neighbours testing procedure and a decreasing neighbours testing procedure. Simulations show that the increasing neighbours testing procedures can be used in large samples to determine k. The decreasing neighbours testing procedure is found to have low power, and is not recommended for use in practice. An empirical example involving house price data is provided to show how to use the testing procedures with real data.
Resumo:
Tutkimuksen tarkoituksena oli selvittää desorptio/fotoionisaatio ilmanpaineessa tekniikan (engl. desorption atmospheric pressure photoionization, DAPPI) soveltuvuutta rikosteknisen laboratorion näytteiden analysointiin. DAPPI on nopea massaspektrometrinen ionisaatiotekniikka, jolla voidaan tutkia yhdisteitä suoraan erilaisilta pinnoilta. DAPPI:ssa käytetään lämmitettyä mikrosirua, joka suihkuttaa höyrystynyttä liuotin- ja kaasuvirtausta kohti näytettä. Näytteen pinnan komponentit desorboituvat lämmön vaikutuksesta, jonka jälkeen ionisoituminen tapahtuu VUV-lampun emittoimien fotonien avulla.DAPPI:lla tutkittiin takavarikoituja huumausaineita, anabolisia steroideja ja räjähdysaineita sekä niiden jäämiä erilaisilta pinnoilta. Lisäksi kartoitettiin DAPPI:n mahdollisuuksia ja rajoituksia erilaisille näytematriiseille ilman näytteiden esikäsittelyä. Takavarikoitujen huumausaineiden tutkimuksessa analysoitiin erilaisia tabletteja, jauheita, kasvirouheita, huumekasveja (khat, oopium, kannabis) ja sieniä. Anabolisia steroideja tunnistettiin tableteista sekä ampulleista, jotka sisälsivät öljymäistä nestettä. Jauheet ripoteltiin kaksipuoliselle teipille ja analysoitiin siltä. Muut näytteet analysoitiin sellaisenaan ilman minkäänlaista esikäsittelyä, paitsi nestemäisten näytteiden kohdalla näyte pipetoitiin talouspaperille, joka analysoitiin DAPPI:lla. DAPPI osoittautui nopeaksi ja yksinkertaiseksi menetelmäksi takavarikoitujen huumausaineiden ja steroidien analysoimisessa. Se soveltui hyvin rikoslaboratorion erityyppisten näytteiden rutiiniseulontaan ja helpotti erityisesti huumekasvien ja öljymäisten steroidiliuosten tutkimusta. Massaspektrometrin likaantuminen pystyttiin ehkäisemään säätämällä näytteen etäisyyttä sen suuaukosta. Likaantumista ei havaittu huolimatta näytteiden korkeista konsentraatioista ja useita kuukausia jatkuneista mittauksista. Räjähdysaineiden tutkimuksessa keskityttiin seitsemän eri räjähdysaineen DAPPI-MS-menetelmän kehitykseen; trinitrotolueeni (TNT), nitroglykoli (NK), nitroglyseriini (NG), pentriitti (PETN), heksogeeni (RDX), oktogeeni (HMX) ja pikriinihappoä Nämä orgaaniset räjähteet ovat nitraattiyhdisteitä, jotka voidaan jakaa rakenteen puolesta nitroamiineihin (RDX ja HMX), nitroaromaatteihin (TNT ja pikriinihappo) sekä nitraattiestereihin (PETN, NG ja NK). Menetelmäkehityksessä räjähdysainelaimennokset pipetoitiin polymetyylimetakrylaatin (PMMA) päälle ja analysoitiin siitä. DAPPI:lla tutkittiin myäs autenttisia räjähdysainejäämiä erilaisista matriiseista. DAPPI:lla optimoitiin jokaiselle räjähdysaineelle sopiva menetelmä ja yhdisteet saatiin näkymään puhdasaineina. Räjähdysainejäämien analysoiminen erilaisista rikospaikkamateriaaleista osoittautui haastavammaksi tehtäväksi, koska matriisit aiheuttivat itsessään korkean taustan spektriin, josta räjähdysaineiden piikit eivät useimmiten erottuneet tarpeeksi. Muut desorptioionisaatiotekniikat saattavat soveltua paremmin haastavien räjähdysainejäämien havaitsemiseksi.