6 resultados para Cytokinesis

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adherent cells undergo remarkable changes in shape during cell division. However, the functional interplay between cell adhesion turnover and the mitotic machinery is poorly understood. The endo/exocytic trafficking of integrins is regulated by the small GTPase Rab21, which associates with several integrin alpha subunits. Here, we show that targeted trafficking of integrins to and from the cleavage furrow is required for successful cytokinesis, and that this is regulated by Rab21. Rab21 activity, integrin-Rab21 association, and integrin endocytosis are all necessary for normal cytokinesis, which becomes impaired when integrin-mediated adhesion at the cleavage furrow fails. We also describe a chromosomal deletion and loss of Rab21 gene expression in human cancer, which leads to the accumulation of multinucleate cells. Importantly, reintroduction of Rab21 rescued this phenotype. In conclusion, Rab21-regulated integrin trafficking is essential for normal cell division, and its defects may contribute to multinucleation and genomic instability, which are hallmarks of cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poikkijuovaisen luuranko- ja sydänlihaksen supistumisyksikkö, sarkomeeri, koostuu tarkoin järjestyneistä aktiini- ja myosiinisäikeistä. Rakenne eroaa muista solutyypeistä, joissa aktiinisäikeistö muovautuu jatkuvasti ja sen järjestyminen säätelee solun muotoa, solujakautumista, soluliikettä ja solunsisäisten organellien kuljetusta. Myotilin, palladin ja myopalladin kuuluvat proteiiniperheeseen, jonka yhteispiirteenä ovat immunoglobuliinin kaltaiset (Igl) domeenit. Proteiinit liittyvät aktiinitukirankaan ja niiden arvellaan toimivan solutukirangan rakenne-elementteinä ja säätelijöinä. Myotilinia ja myopalladinia ilmennetään poikkijuovaisessa lihaksessa. Sen sijaan palladinin eri silmukointimuotoja tavataan monissa kudostyypeissä kuten hermostossa, ja eri muodoilla saattaa olla solutyypistä riippuvia tehtäviä. Poikkijuovaisessa lihaksessa kaikki perheen jäsenet sijaitsevat aktiinisäikeitä yhdistävässä Z-levyssä ja ne sitovat Z-levyn rakenneproteiinia, -aktiniinia. Myotilingeenin pistemutaatiot johtavat periytyviin lihastauteihin, kun taas palladinin mutaatioiden on kuvattu liittyvän periytyvään haimasyöpään ja lisääntyneeseen sydäninfarktin riskiin. Tässä tutkimuksessa selvitettin myotilinin ja pallainin toimintaa. Kokeissa löydettiin uusia palladinin 90-92kDa alatyyppiin sitoutuvia proteiineja. Yksi niistä on aktiinidynamiikkaa säätelevä profilin. Profilinilla on kahdenlaisia tehtäviä; se edesauttaa aktiinisäikeiden muodostumista, mutta se voi myös eristää yksittäisiä aktiinimolekyylejä ja edistää säikeiden hajoamista. Solutasolla palladinin ja profilinin sijainti on yhtenevä runsaasti aktiinia sisältävillä solujen reuna-alueilla. Palladinin ja profilinin sidos on heikko ja hyvin dynaaminen, joka sopii palladinin tehtävään aktiinisäideiden muodostumisen koordinoijana. Toinen palladinin sitoutumiskumppani on aktiinisäikeitä yhteensitova -aktiniini. -Aktiniini liittää solutukirangan solukalvon proteiineihin ja ankkuroi solunsisäisiä viestintämolekyylejä. Sitoutumista välittävä alue on hyvin samankaltainen palladinissa ja myotilinissa. Luurankolihaksen liiallinen toistuva venytys muuttaa Z-levyjen rakennetta ja muotoa. Prosessin aikana syntyy uusia aktiinifilamenttejä sisältäviä tiivistymiä ja lopulta uusia sarkomeereja. Löydöstemme perusteella myotilinin uudelleenjärjestyminen noudattaa aktiinin muutoksia. Tämä viittaa siihen, että myotilin liittää yhteen uudismuodostuvia aktiinisäikeitä ja vakauttaa niitä. Myotilin saattaa myös ankkuroida viesti- tai rakennemolekyylejä, joiden tehtävänä on edesauttaa Z-levyjen uudismuodostusta. Tulostemme perusteella arvelemme, että myotilin toimii Z-levyjen rakenteen vakaajana ja aktiinisäikeiden säätelijänä. Palladinin puute johtaa sikiöaikaiseen kuolemaan hiirillä, mutta myotilinin puutoksella ei ole samanlaisia vaikutuksia. Tuotettujen myotilin poistogeenisten hiirten todetiin syntyvän ja kehittyvän normaalisti eikä niillä esiintynyt rakenteellisia tai toiminnallisia häiriöitä. Toisaalta aiemmissa kokeissa, joissa hiirille on siirretty ihmisen lihastautia aikaansaava myotilingeeni, nähdään samankaltaisia kuin sairailla ihmisillä. Näin ollen muuntunut myotilin näyttä olevan lihaksen toiminnalle haitallisempi kuin myotilinin puute. Myotilinin ja palladinin yhteisvaikutusta selvittääksemme risteytimme myotilin poistegeenisen hiiren ja hiirilinjan, joka ilmentää puutteellisesti palladinin 200 kDa muotoa. Puutteellisesti 200 kDa palladinia ilmentävien hiirten sydänlihaksessa todettiin vähäisiä hienorakenteen muutoksia, mutta risteytetyillä hiirillä tavattiin rakenteellisia ja toiminnallisia muutoksia myös luurankolihaksessa. Tulosten perusteella voidaan todeta, että palladinin 200 kDa muoto säätelee sydänlihassolujen rakennetta. Luurankolihaksessa sen sijaan myotilinilla ja palladinilla näyttäisi olevan päällekkäisiä tehtäviä.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The actin cytoskeleton is required, in all eukaryotic organisms, for several key cellular functions such as cell motility, cytokinesis, and endocytosis. In cells, actin exists either in a monomeric state (G-actin) or in a filamentous form (F-actin). F-actin is the functional form, which can assemble into various structures and produce direct pushing forces that are required for different motile processes. The assembly of actin monomers into complicated three-dimensional structures is tightly regulated by a large number of actin regulating proteins. One central actin regulating protein is twinfilin. Twinfilin consists of two actin depolymerizing-factor homology (ADF-H) domains, which are capable of binding actin, and is conserved from yeast to mammals. Previously it has been shown that twinfilin binds to and sequesters G-actin, and interacts with the heterodimeric capping protein. More recently it has been found that twinfilin also binds to the fast growing actin filament ends and prevents their growth. However, the cellular role of twinfilin and the molecular mechanisms of these interactions have remained unclear. In this study we characterized the molecular mechanisms behind the functions of twinfilin. We demonstrated that twinfilin forms a high-affinity complex with ADP-bound actin monomers (ADP-G-actin). Both ADF-H domains are capable of binding G-actin, but the C-terminal domain contains the high-affinity binding site. Our biochemical analyses identified twinfilin s C-terminal tail region as the interaction site for capping protein. Contrary to G-actin binding, both ADF-H domains of twinfilin are required for the actin filament barbed end capping activity. The C-terminal domain is structurally homologous to ADF/cofilin and binds to filament sides in a similar manner, providing the main affinity for F-actin during barbed end capping. The structure of the N-terminal domain is more distant from ADF/cofilin, and thus it can only associate with G-actin or the terminal actin monomer at the filament barbed end, where it regulates twinfilin s affinity for barbed ends. These data suggest that the mechanism of barbed end capping is similar for twinfilin and gelsolin family proteins. Taken together, these studies revealed how twinfilin interacts with G-actin, filament barbed ends, and capping protein, and also provide a model for how these activities evolved through a duplication of an ancient ADF/cofilin-like domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In every cell, actin is a key component involved in migration, cytokinesis, endocytosis and generation of contraction. In non-muscle cells, actin filaments are very dynamic and regulated by an array of proteins that interact with actin filaments and/or monomeric actin. Interestingly, in non-muscle cells the barbed ends of the filaments are the predominant assembly place, whereas in muscle cells actin dynamics was reported to predominate at the pointed ends of thin filaments. The actin-based thin filament pointed (slow growing) ends extend towards the middle of the sarcomere's M-line where they interact with the thick filaments to generate contraction. The actin filaments in muscle cells are organized into a nearly crystalline array and are believed to be significantly less dynamic than the ones in other cell types. However, the exact mechanisms of the sarcomere assembly and turnover are largely unknown. Interestingly, although sarcomeric actin structures are believed to be relatively non-dynamic, many proteins promoting actin dynamics are expressed also in muscle cells (e.g ADF/cofilin, cyclase-associated protein and twinfilin). Thus, it is possible that the muscle-specific isoforms of these proteins promote actin dynamics differently from their non-muscle counterparts, or that actin filaments in muscle cells are more dynamic than previously thought. To study protein dynamics in live muscle cells, I used primary cell cultures of rat cardiomyocytes. My studies revealed that a subset of actin filaments in cardiomyocyte sarcomeres displays rapid turnover. Importantly, I discovered that the turnover of actin filaments depends on contractility of the cardiomyocytes and that the contractility-induced actin dynamics plays an important role in sarcomere maturation. Together with previous studies those findings suggest that sarcomeres undergo two types of actin dynamics: (1) contractility-dependent turnover of whole filaments and (2) regulatory pointed end monomer exchange to maintain correct thin filament length. Studies involving an actin polymerization inhibitor suggest that the dynamic actin filament pool identified here is composed of filaments that do not contribute to contractility. Additionally, I provided evidence that ADF/cofilins, together with myosin-induced contractility, are required to disassemble non-productive filaments in developing cardiomyocytes. In addition, during these studies we learned that isoforms of actin monomer binding protein twinfilin, Twf-1 and Twf-2a localise to myofibrils in cardiomyocytes and may thus contribute to actin dynamics in myofibrils. Finally, in collaboration with Roberto Dominguez s laboratory we characterized a new actin nucleator in muscle cells - leiomodin (Lmod). Lmod localises towards actin filament pointed ends and its depletion by siRNA leads to severe sarcomere abnormalities in cardiomyocytes. The actin filament nucleation activity of Lmod is enhanced by interactions with tropomyosin. We also revealed that Lmod expression correlates with the maturation of myofibrils, and that it associates with sarcomeres only at relatively late stages of myofibrillogenesis. Thus, Lmod is unlikely to play an important role in myofibril formation, but rather might be involved in the second step of the filament arrangement and/or maintenance through its ability to promote tropomyosin-induced actin filament nucleation occurring at the filament pointed ends. The results of these studies provide valuable new information about the molecular mechanisms underlying muscle sarcomere assembly and turnover. These data offer important clues to understanding certain physiological and pathological behaviours of muscle cells. Better understanding of the processes occurring in muscles might help to find strategies for determining, diagnosis, prognosis and therapy in heart and skeletal muscles diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aneuploidy is among the most obvious differences between normal and cancer cells. However, mechanisms contributing to development and maintenance of aneuploid cell growth are diverse and incompletely understood. Functional genomics analyses have shown that aneuploidy in cancer cells is correlated with diffuse gene expression signatures and that aneuploidy can arise by a variety of mechanisms, including cytokinesis failures, DNA endoreplication and possibly through polyploid intermediate states. Here, we used a novel cell spot microarray technique to identify genes with a loss-of-function effect inducing polyploidy and/or allowing maintenance of polyploid cell growth of breast cancer cells. Integrative genomics profiling of candidate genes highlighted GINS2 as a potential oncogene frequently overexpressed in clinical breast cancers as well as in several other cancer types. Multivariate analysis indicated GINS2 to be an independent prognostic factor for breast cancer outcome (p = 0.001). Suppression of GINS2 expression effectively inhibited breast cancer cell growth and induced polyploidy. In addition, protein level detection of nuclear GINS2 accurately distinguished actively proliferating cancer cells suggesting potential use as an operational biomarker.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological membranes are tightly linked to the evolution of life, because they provide a way to concentrate molecules into partially closed compartments. The dynamic shaping of cellular membranes is essential for many physiological processes, including cell morphogenesis, motility, cytokinesis, endocytosis, and secretion. It is therefore essential to understand the structure of the membrane and recognize the players that directly sculpt the membrane and enable it to adopt different shapes. The actin cytoskeleton provides the force to push eukaryotic plasma membrane in order to form different protrusions or/and invaginations. It has now became evident that actin directly co-operates with many membrane sculptors, including BAR domain proteins, in these important events. However, the molecular mechanisms behind BAR domain function and the differences between the members of this large protein family remain largely unresolved. In this thesis, the structure and functions of the I-BAR domain family members IRSp53 and MIM were thoroughly analyzed. By using several methods such as electron microscopy and systematic mutagenesis, we showed that these I-BAR domain proteins bind to PI(4,5)P2-rich membranes, generate negative membrane curvature and are involved in the formation of plasma membrane protrusions in cells e.g. filopodia. Importantly, we characterized a novel member of the BAR-domain superfamily which we named Pinkbar. We revealed that Pinkbar is specifically expressed in kidney and epithelial cells, and it localizes to Rab13-positive vesicles in intestinal epithelial cells. Remarkably, we learned that the I-BAR domain of Pinkbar does not generate membrane curvature but instead stabilizes planar membranes. Based on structural, mutagenesis and biochemical work we present a model for the mechanism of the novel membrane deforming activity of Pinkbar. Collectively, this work describes the mechanism by which I-BAR domain proteins deform membranes and provides new information about the biological roles of these proteins. Intriguingly, this work also gives evidence that significant functional plasticity exists within the I-BAR domain family. I-BAR proteins can either generate negative membrane curvature or stabilize planar membrane sheets, depending on the specific structural properties of their I-BAR domains. The results presented in this thesis expand our knowledge on membrane sculpting mechanisms and shows for the first time how flat membranes can be generated in cells.