2 resultados para Cryptophytes

em Helda - Digital Repository of University of Helsinki


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eutrophication and enhanced internal nutrient loading of the Baltic Sea are most clearly reflected by increased late-summer cyanobacterial blooms, which often are toxic. In addition to their toxicity to animals, phytoplankton species can be allelopathic, which means that they produce chemicals that inhibit competing phytoplankton species. Such interspecific chemical warfare may lead to the formation of harmful phytoplankton blooms and the spread of exotic species into new habitats. This is the first report on allelopathic effects in brackish-water cyanobacteria. The experimental studies presented in this thesis showed that the filamentous cyanobacteria Anabaena sp., Aphanizomenon flos-aquae and Nodularia spumigena are capable of decreasing the growth of other phytoplankton species, especially cryptophytes, but also diatoms. The detected allelopathic effects are rather transitory, and some co-occurring species show tolerance to them. The allelochemicals are excreted during active growth and they decrease cell numbers, chlorophyll a content and carbon uptake of the target species. Although the more specific modes of action or chemical structures of the allelochemicals remain to be studied, the results clearly indicate that the allelopathic effects are not caused by the hepatotoxin, nodularin. On the other hand, cyanobacteria stimulated the growth of bacteria, other cyanobacteria, chlorophytes and flagellates in a natural phytoplankton community. In a long-term data analysis of phytoplankton abundances and hydrography of the northern Baltic Sea, a clear change was observed in phytoplankton community structure, together with a transition in environmental factors, between the late 1970s and early 2000s. Surface water salinity decreased, whereas water temperature and the concentration of dissolved inorganic nitrogen increased. In the phytoplankton community, the biomass of cyanobacteria, chrysophytes and chlorophytes significantly increased, and the late-summer phytoplankton community became increasingly cyanobacteria-dominated. In contrast, the biomass of cryptophytes decreased. The increased temperature and nutrient concentrations probably explain most of the changes in phytoplankton, but my results suggest that the possible effect of chemically mediated biological interactions should also be considered. Cyanobacterial allelochemicals can cause additional stress to other phytoplankton in the nutrient-depleted late-summer environment and thus contribute to the formation and persistence of long-lasting cyanobacterial mass occurrences. On the other hand, cyanobacterial blooms may either directly or indirectly promote the growth of some phytoplankton species. Therefore, a further increase in cyanobacteria will probably shape the late-summer pelagic phytoplankton community by stimulating some species, but inhibiting others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate is warming and it is especially seen in arctic areas, where the warming trend is expected to be greatest. Arctic freshwater ecosystems, which are a very characteristic feature of the arctic landscape, are especially sensitive to climate change. They could be used as early warning systems, but more information about the ecosystem functioning and responses are needed for proper interpretation of the observations. Phytoplankton species and assemblages could be especially suitable for climate-related studies, since they have short generation times and react rapidly to changes in the environment. In addition, phytoplankton provides a good tool for lake classifications, since different species have different requirements and tolerance ranges for various environmental factors. The use of biological indicators is especially useful in arctic areas, were many of the chemical factors commonly fall under the detection limit and therefore do not provide much information about the environment. This work brings new information about species distribution and dynamics of arctic freshwater phytoplankton in relation to environmental factors. The phytoplankton of lakes in Finnish Lapland and other European high-altitude or high-latitude areas were compared. Most lakes were oligotrophic and dominated by flagellated species belonging to chrysophytes, cryptophytes and dinoflagellates. In Finnish Lapland cryptophytes were of less importance, whereas desmids had high species richness in many of the lakes. In Pan-European scale, geographical and catchment-related factors were explaining most of the differences in species distributions between different districts, whereas lake water chemistry (especially conductivity, SiO2 and pH) was most important regionally. Seasonal and interannual variation of phytoplankton was studied in subarctic Lake Saanajärvi. Characteristic phytoplankton species in this oligotrophic, dimictic lake belonged mainly to chrysophytes and diatoms. The maximum phytoplankton biomass in Lake Saanajärvi occurs during autumn, while spring biomass is very low. During years with heavy snow cover the lake suffers from pH drop caused by melt waters, but the effects of this acid pulse are restricted to surface layers and last for a relatively short period. In addition to some chemical parameters (mainly Ca and nutrients), length of the mixing cycle and physical factors such as lake water temperature and thermal stability of water column had major impact on phytoplankton dynamics. During a year with long and strong thermal stability, the phytoplankton community developed towards an equilibrium state, with heavy dominance of only a few taxa for a longer period of time. During a year with higher windiness and less thermal stability, the species composition was more diverse and species with different functional strategies were able to occur simultaneously. The results of this work indicate that although arctic lakes in general share many common features concerning their catchment and water chemistry, large differences in biological features can be found even in a relatively small area. Most likely the lakes with very different algal flora do not respond in a similar way to differences in the environmental factors, and more information about specific arctic lake types is needed. The results also show considerable year to year differences in phytoplankton species distribution and dynamics, and these changes are most likely linked to climatic factors.