15 resultados para Computer Softwares

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distraction in the workplace is increasingly more common in the information age. Several tasks and sources of information compete for a worker's limited cognitive capacities in human-computer interaction (HCI). In some situations even very brief interruptions can have detrimental effects on memory. Nevertheless, in other situations where persons are continuously interrupted, virtually no interruption costs emerge. This dissertation attempts to reveal the mental conditions and causalities differentiating the two outcomes. The explanation, building on the theory of long-term working memory (LTWM; Ericsson and Kintsch, 1995), focuses on the active, skillful aspects of human cognition that enable the storage of task information beyond the temporary and unstable storage provided by short-term working memory (STWM). Its key postulate is called a retrieval structure an abstract, hierarchical knowledge representation built into long-term memory that can be utilized to encode, update, and retrieve products of cognitive processes carried out during skilled task performance. If certain criteria of practice and task processing are met, LTWM allows for the storage of large representations for long time periods, yet these representations can be accessed with the accuracy, reliability, and speed typical of STWM. The main thesis of the dissertation is that the ability to endure interruptions depends on the efficiency in which LTWM can be recruited for maintaing information. An observational study and a field experiment provide ecological evidence for this thesis. Mobile users were found to be able to carry out heavy interleaving and sequencing of tasks while interacting, and they exhibited several intricate time-sharing strategies to orchestrate interruptions in a way sensitive to both external and internal demands. Interruptions are inevitable, because they arise as natural consequences of the top-down and bottom-up control of multitasking. In this process the function of LTWM is to keep some representations ready for reactivation and others in a more passive state to prevent interference. The psychological reality of the main thesis received confirmatory evidence in a series of laboratory experiments. They indicate that after encoding into LTWM, task representations are safeguarded from interruptions, regardless of their intensity, complexity, or pacing. However, when LTWM cannot be deployed, the problems posed by interference in long-term memory and the limited capacity of the STWM surface. A major contribution of the dissertation is the analysis of when users must resort to poorer maintenance strategies, like temporal cues and STWM-based rehearsal. First, one experiment showed that task orientations can be associated with radically different patterns of retrieval cue encodings. Thus the nature of the processing of the interface determines which features will be available as retrieval cues and which must be maintained by other means. In another study it was demonstrated that if the speed of encoding into LTWM, a skill-dependent parameter, is slower than the processing speed allowed for by the task, interruption costs emerge. Contrary to the predictions of competing theories, these costs turned out to involve intrusions in addition to omissions. Finally, it was learned that in rapid visually oriented interaction, perceptual-procedural expectations guide task resumption, and neither STWM nor LTWM are utilized due to the fact that access is too slow. These findings imply a change in thinking about the design of interfaces. Several novel principles of design are presented, basing on the idea of supporting the deployment of LTWM in the main task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examined how personality and social psychological factors affect third and fourth graders' computer-mediated communication. Personality was analysed in terms of the following strategies: optimism, pessimism and defensive pessimism. Students worked either individually or in dyads which were paired homogeneously or heterogeneously according to the strategies. Moreover, the present study compared horizontal and vertical interaction. The study also examined the role that popularity plays, and students were divided into groups based on their popularity level. The results show that an optimistic strategy is useful. Optimism was found to be related to the active production and processing of ideas. Although previous research has identified drawbacks to pessimism in achievement settings, this study shows that the pessimistic strategy is not as debilitating a strategy as is usually assumed. Pessimistic students were able to process their ideas. However, defensive pessimists were somewhat cautious in introducing or changing ideas. Heterogeneous dyads were not beneficial configurations with respect to producing, introducing, or changing ideas. Moreover, many differences were found to exist between the horizontal and vertical interaction; specifically, the students expressed more opinions and feelings when teachers took no part in the discussions. Strong emotions were observed especially in the horizontal interaction. Further, group working skills were found to be more important for boys than for girls, while rejected students were not at a disadvantage compared to popular ones. Schools can encourage emotional and social learning. The present study shows that students can use computers to express their feelings. In addition, students who are unpopular in non-computer contexts or students who use pessimism can benefit from computers. Participation in computer discussions can give unpopular children a chance to develop confidence when relating to peers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusion power is an appealing source of clean and abundant energy. The radiation resistance of reactor materials is one of the greatest obstacles on the path towards commercial fusion power. These materials are subject to a harsh radiation environment, and cannot fail mechanically or contaminate the fusion plasma. Moreover, for a power plant to be economically viable, the reactor materials must withstand long operation times, with little maintenance. The fusion reactor materials will contain hydrogen and helium, due to deposition from the plasma and nuclear reactions because of energetic neutron irradiation. The first wall divertor materials, carbon and tungsten in existing and planned test reactors, will be subject to intense bombardment of low energy deuterium and helium, which erodes and modifies the surface. All reactor materials, including the structural steel, will suffer irradiation of high energy neutrons, causing displacement cascade damage. Molecular dynamics simulation is a valuable tool for studying irradiation phenomena, such as surface bombardment and the onset of primary damage due to displacement cascades. The governing mechanisms are on the atomic level, and hence not easily studied experimentally. In order to model materials, interatomic potentials are needed to describe the interaction between the atoms. In this thesis, new interatomic potentials were developed for the tungsten-carbon-hydrogen system and for iron-helium and chromium-helium. Thus, the study of previously inaccessible systems was made possible, in particular the effect of H and He on radiation damage. The potentials were based on experimental and ab initio data from the literature, as well as density-functional theory calculations performed in this work. As a model for ferritic steel, iron-chromium with 10% Cr was studied. The difference between Fe and FeCr was shown to be negligible for threshold displacement energies. The properties of small He and He-vacancy clusters in Fe and FeCr were also investigated. The clusters were found to be more mobile and dissociate more rapidly than previously assumed, and the effect of Cr was small. The primary damage formed by displacement cascades was found to be heavily influenced by the presence of He, both in FeCr and W. Many important issues with fusion reactor materials remain poorly understood, and will require a huge effort by the international community. The development of potential models for new materials and the simulations performed in this thesis reveal many interesting features, but also serve as a platform for further studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layering is a widely used method for structuring data in CAD-models. During the last few years national standardisation organisations, professional associations, user groups for particular CAD-systems, individual companies etc. have issued numerous standards and guidelines for the naming and structuring of layers in building design. In order to increase the integration of CAD data in the industry as a whole ISO recently decided to define an international standard for layer usage. The resulting standard proposal, ISO 13567, is a rather complex framework standard which strives to be more of a union than the least common denominator of the capabilities of existing guidelines. A number of principles have been followed in the design of the proposal. The first one is the separation of the conceptual organisation of information (semantics) from the way this information is coded (syntax). The second one is orthogonality - the fact that many ways of classifying information are independent of each other and can be applied in combinations. The third overriding principle is the reuse of existing national or international standards whenever appropriate. The fourth principle allows users to apply well-defined subsets of the overall superset of possible layernames. This article describes the semantic organisation of the standard proposal as well as its default syntax. Important information categories deal with the party responsible for the information, the type of building element shown, whether a layer contains the direct graphical description of a building part or additional information needed in an output drawing etc. Non-mandatory information categories facilitate the structuring of information in rebuilding projects, use of layers for spatial grouping in large multi-storey projects, and storing multiple representations intended for different drawing scales in the same model. Pilot testing of ISO 13567 is currently being carried out in a number of countries which have been involved in the definition of the standard. In the article two implementations, which have been carried out independently in Sweden and Finland, are described. The article concludes with a discussion of the benefits and possible drawbacks of the standard. Incremental development within the industry, (where ”best practice” can become ”common practice” via a standard such as ISO 13567), is contrasted with the more idealistic scenario of building product models. The relationship between CAD-layering, document management product modelling and building element classification is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In smaller countries where the key players in construction IT development tend to know each other personally and where public R&D funding is concentrated to a few channels, IT roadmaps and strategies would seem to have a better chance of influencing development than in the bigger industrial countries. In this paper Finland and the RATAS-project is presented as a historical case illustrating such impact. RATAS was initiated as a construction IT roadmap project in 1985, involving many of the key organisations and companies active in construction sector development. Several of the individuals who took an active part in the project have played an important role in later developments both in Finland and on the international scene. The central result of RATAS was the identification of what is nowadays called Building Information Modelling (BIM) technology as the central issue in getting IT into efficient use in the construction sector. BIM, which earlier was referred to as building product modelling, has been a key ingredient in many roadmaps since and the subject of international standardisation efforts such as STEP and IAI/IFCs. The RATAS project can in hindsight be seen as a forerunner with an impact which also transcended national borders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermonuclear fusion is a sustainable energy solution, in which energy is produced using similar processes as in the sun. In this technology hydrogen isotopes are fused to gain energy and consequently to produce electricity. In a fusion reactor hydrogen isotopes are confined by magnetic fields as ionized gas, the plasma. Since the core plasma is millions of degrees hot, there are special needs for the plasma-facing materials. Moreover, in the plasma the fusion of hydrogen isotopes leads to the production of high energetic neutrons which sets demanding abilities for the structural materials of the reactor. This thesis investigates the irradiation response of materials to be used in future fusion reactors. Interactions of the plasma with the reactor wall leads to the removal of surface atoms, migration of them, and formation of co-deposited layers such as tungsten carbide. Sputtering of tungsten carbide and deuterium trapping in tungsten carbide was investigated in this thesis. As the second topic the primary interaction of the neutrons in the structural material steel was examined. As model materials for steel iron chromium and iron nickel were used. This study was performed theoretically by the means of computer simulations on the atomic level. In contrast to previous studies in the field, in which simulations were limited to pure elements, in this work more complex materials were used, i.e. they were multi-elemental including two or more atom species. The results of this thesis are in the microscale. One of the results is a catalogue of atom species, which were removed from tungsten carbide by the plasma. Another result is e.g. the atomic distributions of defects in iron chromium caused by the energetic neutrons. These microscopic results are used in data bases for multiscale modelling of fusion reactor materials, which has the aim to explain the macroscopic degradation in the materials. This thesis is therefore a relevant contribution to investigate the connection of microscopic and macroscopic radiation effects, which is one objective in fusion reactor materials research.