6 resultados para Compromise solution

em Helda - Digital Repository of University of Helsinki


Relevância:

20.00% 20.00%

Publicador:

Resumo:

NMR spectroscopy enables the study of biomolecules from peptides and carbohydrates to proteins at atomic resolution. The technique uniquely allows for structure determination of molecules in solution-state. It also gives insights into dynamics and intermolecular interactions important for determining biological function. Detailed molecular information is entangled in the nuclear spin states. The information can be extracted by pulse sequences designed to measure the desired molecular parameters. Advancement of pulse sequence methodology therefore plays a key role in the development of biomolecular NMR spectroscopy. A range of novel pulse sequences for solution-state NMR spectroscopy are presented in this thesis. The pulse sequences are described in relation to the molecular information they provide. The pulse sequence experiments represent several advances in NMR spectroscopy with particular emphasis on applications for proteins. Some of the novel methods are focusing on methyl-containing amino acids which are pivotal for structure determination. Methyl-specific assignment schemes are introduced for increasing the size range of 13C,15N labeled proteins amenable to structure determination without resolving to more elaborate labeling schemes. Furthermore, cost-effective means are presented for monitoring amide and methyl correlations simultaneously. Residual dipolar couplings can be applied for structure refinement as well as for studying dynamics. Accurate methods for measuring residual dipolar couplings in small proteins are devised along with special techniques applicable when proteins require high pH or high temperature solvent conditions. Finally, a new technique is demonstrated to diminish strong-coupling induced artifacts in HMBC, a routine experiment for establishing long-range correlations in unlabeled molecules. The presented experiments facilitate structural studies of biomolecules by NMR spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The text is divided into three parts; Properties, Application and Safety of Ammonium Nitrate (AN) based fertilisers. In Properties, the structures and phase transitions of ammonium and potassium nitrate are reviewed. The consequences of phase transitions affect the proper use of fertilisers. Therefore the products must be stabilised against the volume changes and consequent loss of bulk density and hardness, formation of dust and finally caking of fertilisers. The effect of different stabilisers is discussed. Magnesium nitrate, ammonium sulphate and potassium nitrate are presented as a good compromise. In the Application part, the solid solutions in the systems (K+,NH4+)NO3- and (NH4+,K+)(Cl-,NO3-) are presented based on studies made with DSC and XRD. As there are clear limits for solute content in the solvent lattice, a number of disproportionation transitions exist in these process phases, e.g., N3 (solid solution isomorphous to NH4NO3-III) disproportionates to phases K3 (solid solution isomorphous to KNO3-III) and K2 (solid solution isomorphous to KNO3-II). In the crystallisation experiments, the formation of K3 depends upon temperature and the ratio K/(K+NH4). The formation of phases K3, N3, and K2 was modelled as a function of temperature and the mole ratios. In introducing chlorides, two distinct maxima for K3 were found. Confirmed with commercial potash samples, the variables affecting the reaction of potassium chloride with AN are the particle size, time, temperature, moisture content and amount of organic coating. The phase diagrams obtained by crystallisation studies were compared with a number of commercial fertilisers and, with regard to phase composition, the temperature and moisture content are critical when the formation and stability of solid solutions are considered. The temperature where the AN-based fertiliser is solidified affects the amount of compounds crystallised at that point. In addition, the temperature where the final moisture is evaporated affects the amount and type of solid solution formed at this temperature. The amount of remaining moisture affects the stability of the K3 phase. The K3 phase is dissolved by the moisture and recrystallised into the quantities of K3, which is stable at the temperature where the sample is kept. The remaining moisture should not be free; it should be bound as water in the final product. The temperatures during storage also affect the quantity of K3 phase. As presented in the figures, K3 phase is not stable at temperatu¬res below 30 °C. If the temperature is about 40 °C, the K3 phase can be formed due to the remaining moisture. In the Safety part, self-sustaining decomposition (SSD), oxidising and energetic properties of fertilisers are discussed. Based on the consequence analysis of SSD, early detection of decomposition in warehouses and proper temperature control in the manufacturing process is important. SSD and oxidising properties were found in compositions where K3 exists. It is assumed that potassium nitrate forms a solid matrix in which AN can decompose. The oxidising properties can be affected by the form of the product. Granular products are inherently less oxidising. Finally energetic properties are reviewed. The composition of the fertiliser has an importance based on theoretical calculations supported by experimental studies. Materials such as carbonates and sulphates act as diluents. An excess of ammonium ions acts as a fuel although this is debatable. Based on the experimental work, the physical properties have a major importance over the composition. A high bulk density is of key importance for detonation resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cereal arabinoxylans, guar galactomannans, and dextrans produced by lactic acid bacteria(LAB) are a structurally diverse group of branched polysaccharides with nutritional and industrial functions. In this thesis, the effect of the chemical structure on the dilute solution properties of these polysaccharides was investigated using size-exclusion chromatography(SEC) and asymmetric flow field-flow fractionation (AsFlFFF) with multiple-detection. The chemical structures of arabinoxylans were determined, whereas galactomannan and dextran structures were studied in previous investigations. Characterization of arabinoxylans revealed differences in the chemical structures of cereal arabinoxylans. Although arabinoxylans from wheat, rye, and barley fiber contained similar amounts of arabinose side units, the substitution pattern of arabinoxylans from different cereals varied. Arabinoxylans from barley husks and commercial low-viscosity wheat arabinoxylan contained a lower number of arabinose side units. Structurally different dextrans were obtained from different LAB. The structural effects on the solution properties could be studied in detail by modifying pure wheat and rye arabinoxylans and guar galactomannan with specific enzymes. The solution characterization of arabinoxylans, enzymatically modified galactomannans, and dextrans revealed the presence of aggregates in aqueous polysaccharide solutions. In the case of arabinoxylans and dextrans, the comparison of molar mass data from aqueous and organic SEC analyses was essential in confirming aggregation, which could not be observed only from the peak or molar mass distribution shapes obtained with aqueous SEC. The AsFlFFF analyses gave further evidence of aggregation. Comparison of molar mass and intrinsic viscosity data of unmodified and partially debranched guar galactomannan, on the other hand, revealed the aggregation of native galactomannan. The arabinoxylan and galactomannan samples with low or enzymatically extensively decreased side unit content behaved similarly in aqueous solution: lower molar mass samples stayed in solution but formed large aggregates, whereas the water solubility of the higher-molar-mass samples decreased significantly. Due to the restricted solubility of galactomannans in organic solvents, only aqueous galactomannan solutions were studied. The SEC and AsFlFFF results differed for the wheat arabinoxylan and dextran samples. Column matrix effects and possible differences in the separation parameters are discussed, and a problem related to the non-established relationship between the separation parameters of the two separation techniques is highlighted. This thesis shows that complementary approaches in the solution characterization of chemically heterogeneous polysaccharides are needed to comprehensively investigate macromolecular behavior in solution. These results may also be valuable when characterizing other branched polysaccharides.