10 resultados para Competing risks, Estimation of predator mortality, Over dispersion, Stochastic modeling
em Helda - Digital Repository of University of Helsinki
Resumo:
Remote sensing provides methods to infer land cover information over large geographical areas at a variety of spatial and temporal resolutions. Land cover is input data for a range of environmental models and information on land cover dynamics is required for monitoring the implications of global change. Such data are also essential in support of environmental management and policymaking. Boreal forests are a key component of the global climate and a major sink of carbon. The northern latitudes are expected to experience a disproportionate and rapid warming, which can have a major impact on vegetation at forest limits. This thesis examines the use of optical remote sensing for estimating aboveground biomass, leaf area index (LAI), tree cover and tree height in the boreal forests and tundra taiga transition zone in Finland. The continuous fields of forest attributes are required, for example, to improve the mapping of forest extent. The thesis focus on studying the feasibility of satellite data at multiple spatial resolutions, assessing the potential of multispectral, -angular and -temporal information, and provides regional evaluation for global land cover data. Preprocessed ASTER, MISR and MODIS products are the principal satellite data. The reference data consist of field measurements, forest inventory data and fine resolution land cover maps. Fine resolution studies demonstrate how statistical relationships between biomass and satellite data are relatively strong in single species and low biomass mountain birch forests in comparison to higher biomass coniferous stands. The combination of forest stand data and fine resolution ASTER images provides a method for biomass estimation using medium resolution MODIS data. The multiangular data improve the accuracy of land cover mapping in the sparsely forested tundra taiga transition zone, particularly in mires. Similarly, multitemporal data improve the accuracy of coarse resolution tree cover estimates in comparison to single date data. Furthermore, the peak of the growing season is not necessarily the optimal time for land cover mapping in the northern boreal regions. The evaluated coarse resolution land cover data sets have considerable shortcomings in northernmost Finland and should be used with caution in similar regions. The quantitative reference data and upscaling methods for integrating multiresolution data are required for calibration of statistical models and evaluation of land cover data sets. The preprocessed image products have potential for wider use as they can considerably reduce the time and effort used for data processing.
Resumo:
This study presents a population projection for Namibia for years 2011–2020. In many countries of sub-Saharan Africa, including Namibia, the population growth is still continuing even though the fertility rates have declined. However, many of these countries suffer from a large HIV epidemic that is slowing down the population growth. In Namibia, the epidemic has been severe. Therefore, it is important to assess the effect of HIV/AIDS on the population of Namibia in the future. Demographic research on Namibia has not been very extensive, and data on population is not widely available. According to the studies made, fertility has been shown to be generally declining and mortality has been significantly increasing due to AIDS. Previous population projections predict population growth for Namibia in the near future, yet HIV/AIDS is affecting the future population developments. For the projection constructed in this study, data on population is taken from the two most recent censuses, from 1991 and 2001. Data on HIV is available from HIV Sentinel Surveys 1992–2008, which test pregnant women for HIV in antenatal clinics. Additional data are collected from different sources and recent studies. The projection is made with software (EPP and Spectrum) specially designed for developing countries with scarce data. The projection includes two main scenarios which have different assumptions concerning the development of the HIV epidemic. In addition, two hypothetical scenarios are made: the first considering the case where HIV epidemic would never have existed and the second considering the case where HIV treatment would never have existed. The results indicate population growth for Namibia. Population in the 2001 census was 1.83 million and is projected to result in 2.38/2.39 million in 2020 in the first two scenarios. Without HIV, population would be 2.61 million and without treatment 2.30 million in 2020. Urban population is growing faster than rural. Even though AIDS is increasing mortality, the past high fertility rates still keep young adult age groups quite large. The HIV epidemic shows to be slowing down, but it is still increasing the mortality of the working-aged population. The initiation of HIV treatment in 2004 in the public sector seems to have had an effect on many projected indicators, diminishing the impact of HIV on the population. For example, the rise of mortality is slowing down.
Resumo:
This thesis examines the feasibility of a forest inventory method based on two-phase sampling in estimating forest attributes at the stand or substand levels for forest management purposes. The method is based on multi-source forest inventory combining auxiliary data consisting of remote sensing imagery or other geographic information and field measurements. Auxiliary data are utilized as first-phase data for covering all inventory units. Various methods were examined for improving the accuracy of the forest estimates. Pre-processing of auxiliary data in the form of correcting the spectral properties of aerial imagery was examined (I), as was the selection of aerial image features for estimating forest attributes (II). Various spatial units were compared for extracting image features in a remote sensing aided forest inventory utilizing very high resolution imagery (III). A number of data sources were combined and different weighting procedures were tested in estimating forest attributes (IV, V). Correction of the spectral properties of aerial images proved to be a straightforward and advantageous method for improving the correlation between the image features and the measured forest attributes. Testing different image features that can be extracted from aerial photographs (and other very high resolution images) showed that the images contain a wealth of relevant information that can be extracted only by utilizing the spatial organization of the image pixel values. Furthermore, careful selection of image features for the inventory task generally gives better results than inputting all extractable features to the estimation procedure. When the spatial units for extracting very high resolution image features were examined, an approach based on image segmentation generally showed advantages compared with a traditional sample plot-based approach. Combining several data sources resulted in more accurate estimates than any of the individual data sources alone. The best combined estimate can be derived by weighting the estimates produced by the individual data sources by the inverse values of their mean square errors. Despite the fact that the plot-level estimation accuracy in two-phase sampling inventory can be improved in many ways, the accuracy of forest estimates based mainly on single-view satellite and aerial imagery is a relatively poor basis for making stand-level management decisions.
Resumo:
In Finland, peat harvesting sites are utilized down almost to the mineral soil. In this situation the properties of mineral subsoil are likely to have considerable influence on the suitability for the various after-use forms. The aims of this study were to recognize the chemical and physical properties of mineral subsoils possibly limiting the after-use of cut-over peatlands, to define a minimum practice for mineral subsoil studies and to describe the role of different geological areas. The future percentages of the different after-use forms were predicted, which made it possible to predict also carbon accumulation in this future situation. Mineral subsoils of 54 different peat production areas were studied. Their general features and grain size distribution was analysed. Other general items studied were pH, electrical conductivity, organic matter, water soluble nutrients (P, NO3-N, NH4-N, S and Fe) and exchangeable nutrients (Ca, Mg and K). In some cases also other elements were analysed. In an additional case study carbon accumulation effectiveness before the intervention was evaluated on three sites in Oulu area (representing sites typically considered for peat production). Areas with relatively sulphur rich mineral subsoil and pool-forming areas with very fine and compact mineral subsoil together covered approximately 1/5 of all areas. These areas were unsuitable for commercial use. They were recommended for example for mire regeneration. Another approximate 1/5 of the areas included very coarse or very fine sediments. Commercial use of these areas would demand special techniques - like using the remaining peat layer for compensating properties missing from the mineral subsoil. One after-use form was seldom suitable for one whole released peat production area. Three typical distribution patterns (models) of different mineral subsoils within individual peatlands were found. 57 % of studied cut-over peatlands were well suited for forestry. In a conservative calculation 26% of the areas were clearly suitable for agriculture, horticulture or energy crop production. If till without large boulders was included, the percentage of areas suitable to field crop production would be 42 %. 9-14 % of all areas were well suitable for mire regeneration or bird sanctuaries, but all areas were considered possible for mire regeneration with correct techniques. Also another 11 % was recommended for mire regeneration to avoid disturbing the mineral subsoil, so total 20-25 % of the areas would be used for rewetting. High sulphur concentrations and acidity were typical to the areas below the highest shoreline of the ancient Litorina sea and Lake Ladoga Bothnian Bay zone. Also differences related to nutrition were detected. In coarse sediments natural nutrient concentration was clearly higher in Lake Ladoga Bothnian Bay zone and in the areas of Svecokarelian schists and gneisses, than in Granitoid area of central Finland and in Archaean gneiss areas. Based on this study the recommended minimum analysis for after-use planning was for pH, sulphur content and fine material (<0.06 mm) percentage. Nutrition capacity could be analysed using the natural concentrations of calcium, magnesium and potassium. Carbon accumulation scenarios were developed based on the land-use predictions. These scenarios were calculated for areas in peat production and the areas released from peat production (59300 ha + 15 671 ha). Carbon accumulation of the scenarios varied between 0.074 and 0.152 million t C a-1. In the three peatlands considered for peat production the long term carbon accumulation rates varied between 13 and 24 g C m-2 a-1. The natural annual carbon accumulation had been decreasing towards the time of possible intervention.
Resumo:
Productivity is predicted to drive the ecological and evolutionary dynamics of predator-prey interaction through changes in resource allocation between different traits. However, resources are seldom constantly available and thus temporal variation in productivity could have considerable effect on the species' potential to evolve. To study this, three long-term microbial laboratory experiments were established where Serratia marcescens prey bacteria was exposed to predation of protist Tetrahymena thermophila in different prey resource environments. The consequences of prey resource availability for the ecological properties of the predator-prey system, such as trophic dynamics, stability, and virulence, were determined. The evolutionary changes in species traits and prey genetic diversity were measured. The prey defence evolved stronger in high productivity environment. Increased allocation to defence incurred cost in terms of reduced prey resource use ability, which probably constrained prey evolution by increasing the effect of resource competition. However, the magnitude of this trade-off diminished when measured in high resource concentrations. Predation selected for white, non-pigmented, highly defensive prey clones that produced predation resistant biofilm. The biofilm defence was also potentially accompanied with cytotoxicity for predators and could have been traded off with high motility. Evidence for the evolution of predators was also found in one experiment suggesting that co-evolutionary dynamics could affect the evolution and ecology of predator-prey interaction. Temporal variation in resource availability increased variation in predator densities leading to temporally fluctuating selection for prey defences and resource use ability. Temporal variation in resource availability was also able to constrain prey evolution when the allocation to defence incurred high cost. However, when the magnitude of prey trade-off was small and the resource turnover was periodically high, temporal variation facilitated the formation of predator resistant biofilm. The evolution of prey defence constrained the transfer of energy from basal to higher trophic levels, decreasing the strength of top-down regulation on prey community. Predation and temporal variation in productivity decreased the stability of populations and prey traits in general. However, predation-induced destabilization was less pronounced in the high productivity environment where the evolution of prey defence was stronger. In addition, evolution of prey defence weakened the environmental variation induced destabilization of predator population dynamics. Moreover, protozoan predation decreased the S. marcescens virulence in the insect host moth (Parasemia plantaginis) suggesting that species interactions outside the context of host-pathogen relationship could be important indirect drivers for the evolution of pathogenesis. This thesis demonstrates that rapid evolution can affect various ecological properties of predator-prey interaction. The effect of evolution on the ecological dynamics depended on the productivity of the environment, being most evident in the constant environments with high productivity.
Resumo:
This paper estimates the extent of income underreporting by the self-employed in Finland using the expenditure based approach developed by Pissarides & Weber (1989). Household spending data are for the years 1994 to 1996. The results suggest that self-employment income in Finland is underreported by some 27% on average. Since income for the self-employed is about 8 % of all incomes in Finland, the size of this part of the black economy in Finland is estimated to be about 2,3% of GDP.
Resumo:
Two methods of pre-harvest inventory were designed and tested on three cutting sites containing a total of 197 500 m3 of wood. These sites were located on flat-ground boreal forests located in northwestern Quebec. Both methods studied involved scaling of trees harvested to clear the road path one year (or more) prior to harvest of adjacent cut-blocks. The first method (ROAD) considers the total road right-of-way volume divided by the total road area cleared. The resulting volume per hectare is then multiplied by the total cut-block area scheduled for harvest during the following year to obtain the total estimated cutting volume. The second method (STRATIFIED) also involves scaling of trees cleared from the road. However, in STRATIFIED, log scaling data are stratified by forest stand location. A volume per hectare is calculated for each stretch of road that crosses a single forest stand. This volume per hectare is then multiplied by the remaining area of the same forest stand scheduled for harvest one year later. The sum of all resulting estimated volumes per stand gives the total estimated cutting-volume for all cut-blocks adjacent to the studied road. A third method (MNR) was also used to estimate cut-volumes of the sites studied. This method represents the actual existing technique for estimating cutting volume in the province of Quebec. It involves summing the cut volume for all forest stands. The cut volume is estimated by multiplying the area of each stand by its estimated volume per hectare obtained from standard stock tables provided by the governement. The resulting total estimated volume per cut-block for all three methods was then compared with the actual measured cut-block volume (MEASURED). This analysis revealed a significant difference between MEASURED and MNR methods with the MNR volume estimate being 30 % higher than MEASURED. However, no significant difference from MEASURED was observed for volume estimates for the ROAD and STRATIFIED methods which respectively had estimated cutting volumes 19 % and 5 % lower than MEASURED. Thus the ROAD and STRATIFIED methods are good ways to estimate cut-block volumes after road right-of-way harvest for conditions similar to those examined in this study.