14 resultados para Chromosome 29
em Helda - Digital Repository of University of Helsinki
Resumo:
Glaucoma is the second leading cause of blindness worldwide. It is a group of optic neuropathies, characterized by progressive optic nerve degeneration, excavation of the optic disc due to apoptosis of retinal ganglion cells and corresponding visual field defects. Open angle glaucoma (OAG) is a subtype of glaucoma, classified according to the age of onset into juvenile and adult- forms with a cut-off point of 40 years of age. The prevalence of OAG is 1-2% of the population over 40 years and increases with age. During the last decade several candidate loci and three candidate genes, myocilin (MYOC), optineurin (OPTN) and WD40-repeat 36 (WDR36), for OAG have been identified. Exfoliation syndrome (XFS), age, elevated intraocular pressure and genetic predisposition are known risk factors for OAG. XFS is characterized by accumulation of grayish scales of fibrillogranular extracellular material in the anterior segment of the eye. XFS is overall the most common identifiable cause of glaucoma (exfoliation glaucoma, XFG). In the past year, three single nucleotide polymorphisms (SNPs) on the lysyl oxidase like 1 (LOXL1) gene have been associated with XFS and XFG in several populations. This thesis describes the first molecular genetic studies of OAG and XFS/XFG in the Finnish population. The role of the MYOC and OPTN genes and fourteen candidate loci was investigated in eight Finnish glaucoma families. Both candidate genes and loci were excluded in families, further confirming the heterogeneous nature of OAG. To investigate the genetic basis of glaucoma in a large Finnish family with juvenile and adult onset OAG, we analysed the MYOC gene in family members. Glaucoma associated mutation (Thr377Met) was identified in the MYOC gene segregating with the disease in the family. This finding has great significance for the family and encourages investigating the MYOC gene also in other Finnish OAG families. In order to identify the genetic susceptibility loci for XFS, we carried out a genome-wide scan in the extended Finnish XFS family. This scan produced promising candidate locus on chromosomal region 18q12.1-21.33 and several additional putative susceptibility loci for XFS. This locus on chromosome 18 provides a solid starting point for the fine-scale mapping studies, which are needed to identify variants conferring susceptibility to XFS in the region. A case-control and family-based association study and family-based linkage study was performed to evaluate whether SNPs in the LOXL1 gene contain a risk for XFS, XFG or POAG in the Finnish patients. A significant association between the LOXL1 gene SNPs and XFS and XFG was confirmed in the Finnish population. However, no association was detected with POAG. Probably also other genetic and environmental factors are involved in the pathogenesis of XFS and XFG.
Resumo:
Human central nervous system (CNS) tumors are a heterogeneous group of tumors occurring in brain, brainstem and spinal cord. Malignant gliomas (astrocytic and oligodendroglial tumors), which arise from the neuroepithelial cells are the most common CNS neoplasms in human. Malignant gliomas are highly aggressive and invasive tumors, and have a very poor prognosis. The development and progression of gliomas involve a stepwise accumulation of genetic alterations that generally affect either signal transduction pathways activated by receptor tyrosine kinases (RTKs), or cell cycle arrest pathways. Constitutive activation or deregulated signaling by RTKs is caused by gene amplification, overexpression or mutations. The aberrant RTK signaling results in turn in the activation of several downstream pathways, which ultimately lead to malignant transformation and tumor proliferation. Many genetic abnormalities implicated in nervous system tumors involve the genes located at the chromosomal region 4q12. This locus harbors the receptor tyrosine kinases KIT, PDGFRA and VEGFR2, and other genes (REST, LNX1) with neural function. Gene amplification and protein expression of KIT, PDGFRA, and VEGFR2 was studied using clinical tumor material. REST and LNX1, as well as NUMBL, the interaction partner of LNX1, were studied for their gene mutations and amplifications. In our studies, amplification of LNX1 was associated with KIT and PDGFRA amplification in glioblastomas, and coamplification of KIT, PDGFRA and VEGFR2 was detected in medulloblastomas and CNS primitive neuroectodermal tumors. PDGFRA amplification was also correlated with poor overall survival. Coamplification of KIT, PDGFRA and VEGFR2 was observed in a subset of human astrocytic and oligodendroglial tumors. We suggest that genes at 4q12 could be a part of a larger amplified region, which is deregulated in gliomas, and could be used as a prognostic marker of tumorigenic process. The signaling pathways activated due to gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment. This study also includes the characterization of KIT overexpressing astrocytes, analyzed by various in vitro functional assays. Our results show that overexpression of KIT in mouse astrocytes promotes cell proliferation and anchorage-independent growth, as well as phenotypic changes in the cells. Furthermore, the increased proliferation is partly inhibited by imatinib, a small molecule inhibitor of KIT. These results suggest that KIT may play a role in astrocyte growth regulation, and might have an oncogenic role in brain tumorigenesis. Elucidation of the altered signaling pathways due to specific gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment.
Resumo:
The von Hippel-lindau (VHL) disease is a dominantly inherited neoplastic disorder which predisposes patients to multiple tumours including capillary haemangioblastomas (CHBs), pheochromocytomas (PCCs), renal cell carcinomas (RCCs). CHBs are the most common manifestations of VHL disease, occurring sporadically or as a manifestation of VHL disease. Inactivation of the VHL gene at 3p25-26 is believed to cause both familial and sporadic VHL-associated tumours and germ-line mutation of the VHL gene have been detected in 100% of the CHBs studied. However, a limited number of sporadic CHBs, PCCs display VHL inactivation. Other molecular alterations involved in tumourigenesis of sporadic CHBs, PCCs remain largely unknown. The purpose of the present work was to search for genetic alterations, or other mechanisms of inactivation, in addition to the VHL gene, that may be important in the development of VHL-associated tumours. Though less satisfactory than cure, prevention and early detection are the most promising and feasible means reducing cancer morbidity and mortality. This work is based on the view that increasing knowledge about the molecular events underlying tumour development will eventually aid in early detection and lead to improved treatment. We evaluated a large set of VHL-associated patients, searched for a clinical and radiologic signs of the disease. We succesfully performed a germ-line mutation analysis and characterised three patient groups, VHL, suspect VHL and sporadic, a germ-line mutation analysis revealed a 50% mutation rate only in the VHL groups, no sporadic or suspect cases displayed any mutation. We also utilized comparative genomic hybridization (CGH) to screen for DNA copy number changes in both sporadic and VHL-associated CHB. Our analysis revealed (27%) DNA copy number losses. The most common finding was loss of chromosomal arm 6q, seen in (23%) cases, No differences were noted between VHL-associated and sporadic tumours. Furthermore a loss of heterozygosity (LOH) study on chromosome 3p and 6q was done with the purpose to determine allele losses not observable by CGH, and to uncover the location of putative tumour suppressor genes important in CHB and PCC tumourigenesis. We identified loss of chromosome 6q and a minimal deleted area at 6q23-24 in CHBs. We also showed LOH at 6q23-24 in PCCs and identified the ZAC1 (6q24-25) as a candidate gene, ZAC1 is a maternally imprinted tumour suppressor gene with anti proliferative properties. To study further the role of ZAC inactivation in CHBs, we investigated LOH, promoter hypermethylation and expression status of the ZAC1 gene in mainly sporadic CHBs. Our LOH analysis revealed that the majority of the tumours with allele loss. The gene promoter methylation analysis similarly detected predominance of the methylated ZAC sequence in almost all tumours. Immunohistochemistry exhibited a strongly reduced expression of ZAC in stromal cells of all CHBs studied. Our current results indicate that the absence of the unmethylated, ZAC1 promoter sequence was highly concurrent with LOH for the ZAC1 region or 6q loss. This observation together with lack of ZAC expression, points to preferential loss of the non imprinted, expressed ZAC allele in CHB, in summary, our series of studies reveal a new chromosomal region 6q, emphasizes the importance of ZAC1 gene in the development of CHB and PCC, particularly in non-VHL associated cases.
Resumo:
Large-scale chromosome rearrangements such as copy number variants (CNVs) and inversions encompass a considerable proportion of the genetic variation between human individuals. In a number of cases, they have been closely linked with various inheritable diseases. Single-nucleotide polymorphisms (SNPs) are another large part of the genetic variance between individuals. They are also typically abundant and their measuring is straightforward and cheap. This thesis presents computational means of using SNPs to detect the presence of inversions and deletions, a particular variety of CNVs. Technically, the inversion-detection algorithm detects the suppressed recombination rate between inverted and non-inverted haplotype populations whereas the deletion-detection algorithm uses the EM-algorithm to estimate the haplotype frequencies of a window with and without a deletion haplotype. As a contribution to population biology, a coalescent simulator for simulating inversion polymorphisms has been developed. Coalescent simulation is a backward-in-time method of modelling population ancestry. Technically, the simulator also models multiple crossovers by using the Counting model as the chiasma interference model. Finally, this thesis includes an experimental section. The aforementioned methods were tested on synthetic data to evaluate their power and specificity. They were also applied to the HapMap Phase II and Phase III data sets, yielding a number of candidates for previously unknown inversions, deletions and also correctly detecting known such rearrangements.
Resumo:
This thesis presents a highly sensitive genome wide search method for recessive mutations. The method is suitable for distantly related samples that are divided into phenotype positives and negatives. High throughput genotype arrays are used to identify and compare homozygous regions between the cohorts. The method is demonstrated by comparing colorectal cancer patients against unaffected references. The objective is to find homozygous regions and alleles that are more common in cancer patients. We have designed and implemented software tools to automate the data analysis from genotypes to lists of candidate genes and to their properties. The programs have been designed in respect to a pipeline architecture that allows their integration to other programs such as biological databases and copy number analysis tools. The integration of the tools is crucial as the genome wide analysis of the cohort differences produces many candidate regions not related to the studied phenotype. CohortComparator is a genotype comparison tool that detects homozygous regions and compares their loci and allele constitutions between two sets of samples. The data is visualised in chromosome specific graphs illustrating the homozygous regions and alleles of each sample. The genomic regions that may harbour recessive mutations are emphasised with different colours and a scoring scheme is given for these regions. The detection of homozygous regions, cohort comparisons and result annotations are all subjected to presumptions many of which have been parameterized in our programs. The effect of these parameters and the suitable scope of the methods have been evaluated. Samples with different resolutions can be balanced with the genotype estimates of their haplotypes and they can be used within the same study.
Resumo:
The basis of this work was the identification of a genomic region on chromosome 7p14-p15 that strongly associated with asthma and high serum total immunoglobulin E in a Finnish founder population from Kainuu. Using a hierarchical genotyping approach the linkage region was narrowed down until an evolutionary collectively inherited 133-kb haplotype block was discovered. The results were confirmed in two independent data sets: Asthma families from Quebec and allergy families from North-Karelia. In all the three cohorts studied, single nucleotide polymorphisms tagging seven common gene variants (haplotypes) were identified. Over half of the asthma patients carried three evolutionary closely related susceptibility haplotypes as opposed to approximately one third of the healthy controls. The risk effects of the gene variants varied from 1.4 to 2.5. In the disease-associated region, there was one protein-coding gene named GPRA (G Protein-coupled Receptor for Asthma susceptibility also known as NPSR1) which displayed extensive alternative splicing. Only the two isoforms with distinct intracellular tail sequences, GPRA-A and -B, encoded a full-length G protein-coupled receptor with seven transmembrane regions. Using various techniques, we showed that GPRA is expressed in multiple mucosal surfaces including epithelial cells throughout the respiratory tract. GPRA-A has additional expression in respiratory smooth muscle cells. However, in bronchial biopsies with unknown haplotypes, GPRA-B was upregulated in airways of all patient samples in contrast to the lack of expression in controls. Further support for GPRA as a common mediator of inflammation was obtained from a mouse model of ovalbumin-induced inflammation, where metacholine-induced airway hyperresponsiveness correlated with elevated GPRA mRNA levels in the lung and increased GPRA immunostaining in pulmonary macrophages. A novel GPRA agonist, Neuropeptide S (NPS), stimulated phagocytosis of Esterichia coli bacteria in a mouse macrophage cell line indicating a role for GPRA in the removal of inhaled allergens. The suggested GPRA functions prompted us to study, whether GPRA haplotypes associate with respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) in infants sharing clinical symptoms with asthma. According to the results, near-term RDS and asthma may also share the same susceptibility and protective GPRA haplotypes. As in asthma, GPRA-B isoform expression was induced in bronchial smooth muscle cells in RDS and BPD suggesting a role for GPRA in bronchial hyperresponsiveness. In conclusion, the results of the present study suggest that the dysregulation of the GPRA/NPS pathway may not only be limited to the individuals carrying the risk variants of the gene but is also involved in the regulation of immune functions of asthma.
Resumo:
In the general population, the timing of puberty is normally distributed. This variation is determined by genetic and environmental factors, but the exact mechanisms underlying these influences remain elusive. The purpose of this study was to gain insight into genetic regulation of pubertal timing. Contributions of genetic versus environmental factors to the normal variation of pubertal timing were explored in twins. Familial occurrence and inheritance patterns of constitutional delay of growth and puberty, CDGP (a variant of normal pubertal timing), were studied in pedigrees of patients with this condition. To ultimately detect genes involved in the regulation of pubertal timing, genetic loci conferring susceptibility to CDGP were mapped by linkage analysis in the same family cohort. To subdivide the overall phenotypic variance of pubertal timing into genetic and environmental components, genetic modeling based on monozygous twins sharing 100% and dizygous twins sharing 50% of their genes was used in 2309 girls and 1828 boys from the FinnTwin 12-17 study. The timing of puberty was estimated from height growth, i.e. change in the relative height between the age when pubertal growth velocity peaks in the general population and adulthood. This reflects the percentage of adult height achieved at the average peak height velocity age, and thus, pubertal timing. Boys and girls diagnosed with CDGP were gathered through medical records from six pediatric clinics in Finland. First-degree relatives of the probands were invited to participate by letter; altogether, 286 families were recruited. When possible, families were extended to include also second-, third-, or fourth-degree relatives. The timing of puberty in all family members was primarily assessed from longitudinal growth data. Delayed puberty was defined by onset of pubertal growth spurt or peak height velocity taking place 1.5 (relaxed criterion) or 2 SD (strict criterion) beyond the mean. If growth data were unavailable, pubertal timing was based on interviews. In this case, CDGP criteria were set as having undergone pubertal development more than 2 (strict criterion) or 1.5 years (relaxed criterion) later than their peers, or menarche after 15 (strict criterion) or 14 years (relaxed criterion). Familial occurrence of strict CDGP was explored in families of 124 patients (95 males and 29 females) from two clinics in Southern Finland. In linkage analysis, we used relaxed CDGP criteria; 52 families with solely growth data-based CDGP diagnoses were selected from all clinics. Based on twin data, genetic factors explain 86% and 82% of the variance of pubertal timing in girls and boys, respectively. In families, 80% of male and 76% of female probands had affected first-degree relatives, in whom CDGP was 15 times more common than the expected (2.5%). In 74% (17 of 23) of the extended families with only one affected parent, familial patterns were consistent with autosomal dominant inheritance. By using 383 multiallelic markers and subsequently fine-mapping with 25 additional markers, significant linkage for CDGP was detected to the pericentromeric region of chromosome 2, to 2p13-2q13 (multipoint HLOD 4.44, α 0.41). The findings of the large twin study imply that the vast majority of the normal variation of pubertal timing is attributed to genetic effects. Moreover, the high frequency of dominant inheritance patterns and the large number of affected relatives of CDGP patients suggest that genetic factors also markedly contribute to constitutional delay of puberty. Detection of the locus 2p13-2q13 in the pericentromeric region of chromosome 2 associating with CDGP is one step towards unraveling the genes that determine pubertal timing.
Resumo:
Over the years, a wide range of methods to verify identity have been developed. Molecular markers have been used for identification since the 1920s, commencing with blood types and culminating with the advent of DNA techniques in the 1980s. Identification is required by authorities in many occasions, e.g. in disputed paternity cases, identification of deceased, or crime investigation. To clarify maternal and paternal lineages, uniparental DNA markers in mtDNA and Y-chromosome can be utilized. These markers have several advantages: male specific Y-chromosome can be used to identify a male from a mixture of male and female cells, e.g. in rape cases. MtDNA is durable and has a high copy number, allowing analyses even from old or degraded samples. However, both markers are lineage-specific, not individualizing, and susceptible to genetic drift. Prior to the application of any DNA marker in forensic casework, it is of utmost importance to investigate its qualities and peculiarities in the target population. Earlier studies on the Finnish population have shown reduced variation in the Y-chromosome, but in mtDNA results have been ambiguous. The obtained results confirmed the low diversity in Y-chromosome in Finland. Detailed population analysis revealed large regional differences, and extremely reduced diversity especially in East Finland. Analysis of the qualities affecting Y-chromosomal short tandem repeat (Y-STR) variation and mutation frequencies, and search of new polymorphic markers resulted a set of Y-STRs with especially high diversity in Finland. Contrary to Y-chromosome, neither reduced diversity nor regional differences were found in mtDNA within Finland. In fact, mtDNA diversity was found similar to other European populations. The revealed peculiarities in the uniparental markers are a legacy of the Finnish population history. The obtained results challenge the traditional explanation which emphasizes relatively recent founder effects creating the observed east-west patterns. Uniparentally inherited markers, both mtDNA and Y-chromosome, are applicable for identification purposes in Finland. By adjusting the analysed Y marker set to meet the characteristics of Finnish population, Y-chromosomal diversity increases and the regional differentiation decreases, resulting increase in discrimination power and thus usefulness of Y-chromosomal analysis in forensic casework.