39 resultados para Chromosomal rearrangements
em Helda - Digital Repository of University of Helsinki
Resumo:
Background: The Ewing sarcoma family of tumors (ESFT) are rare but highly malignant neoplasms that occur mainly in bone or but also in soft tissue. ESFT affects patients typically in their second decade of life, whereby children and adolescents bear the heaviest incidence burden. Despite recent advances in the clinical management of ESFT patients, their prognosis and survival are still disappointingly poor, especially in cases with metastasis. No targeted therapy for ESFT patients is currently available. Moreover, based merely on current clinical and biological characteristics, accurate classification of ESFT patients often fails at the time of diagnosis. Therefore, there is a constant need for novel molecular biomarkers to be applied in tandem with conventional parameters to further intensify ESFT risk-stratification and treatment selection, and ultimately to develop novel targeted therapies. In this context, a greater understanding of the genetics and immune characteristics of ESFT is needed. Aims: This study sought to open novel insights into gene copy number changes and gene expression in ESFT and, further, to enlighten the role of inflammation in ESFT. For this purpose, microarrays were used to provide gene-level information on a genomewide scale. In addition, this study focused on screening of 9p21.3 deletion sizes and frequencies in ESFT and, in another pediatric cancer, acute lymphocytic leukemia (ALL), in order to define more exact criteria for highrisk patient selection and to provide data for developing a more reliable diagnostic method to detect CDKN2A deletions. Results: In study I, 20 novel ESFT-associated suppressor genes and oncogenes were pinpointed using combined array CGH and expression analysis. In addition, interesting chromosomal rearrangements were identified: (1) Duplication of derivative chromosome der(22)(11;22) was detected in three ESFT patients. This duplication included the EWSR1-FLI1 fusion gene leading to increase in its copy number; (2) Cryptic amplifications on chromosomes 20 and 22 were detected, suggesting a novel translocation between chromosomes 20 and 22, which most probably produces a fusion between EWSR1 and NFATC2. In study II, bioinformatic analysis of ESFT expression profiles showed that inflammatory gene activation is detectable in ESFT patient samples and that the activation is characterized by macrophage gene expression. Most interestingly, ESFT patient samples were shown to express certain inflammatory genes that were prognostically significant. High local expression of C5 and JAK1 at the tumor site was shown to associate with favorable clinical outcome, whereas high local expression of IL8 was shown to be detrimental. Studies III and IV showed that the smallest overlapping region of deletion in 9p21.3 includes CDKN2A in all cases and that the length of this region is 12.2 kb in both Ewing sarcoma and ALL. Furthermore, our results showed that the most widely used commercial CDKN2A FISH probe creates false negative results in the narrowest microdeletion cases (<190 kb). Therefore, more accurate methods should be developed for the detection of deletions in the CDKN2A locus. Conclusions: This study provides novel insights into the genetic changes involved in the biology of ESFT, in the interaction between ESFT cells and immune system, and in the inactivation of CDKN2A. Novel ESFT biomarker genes identified in this study serve as a useful resource for future studies and in developing novel therapeutic strategies to improve the survival of patients with ESFT.
Resumo:
Chromosomal alterations in leukemia have been shown to have prognostic and predictive significance and are also important minimal residual disease (MRD) markers in the follow-up of leukemia patients. Although specific oncogenes and tumor suppressors have been discovered in some of the chromosomal alterations, the role and target genes of many alterations in leukemia remain unknown. In addition, a number of leukemia patients have a normal karyotype by standard cytogenetics, but have variability in clinical course and are often molecularly heterogeneous. Cytogenetic methods traditionally used in leukemia analysis and diagnostics; G-banding, various fluorescence in situ hybridization (FISH) techniques, and chromosomal comparative genomic hybridization (cCGH), have enormously increased knowledge about the leukemia genome, but have limitations in resolution or in genomic coverage. In the last decade, the development of microarray comparative genomic hybridization (array-CGH, aCGH) for DNA copy number analysis and the SNP microarray (SNP-array) method for simultaneous copy number and loss of heterozygosity (LOH) analysis has enabled investigation of chromosomal and gene alterations genome-wide with high resolution and high throughput. In these studies, genetic alterations were analyzed in acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL). The aim was to screen and characterize genomic alterations that could play role in leukemia pathogenesis by using aCGH and SNP-arrays. One of the most important goals was to screen cryptic alterations in karyotypically normal leukemia patients. In addition, chromosomal changes were evaluated to narrow the target regions, to find new markers, and to obtain tumor suppressor and oncogene candidates. The work presented here shows the capability of aCGH to detect submicroscopic copy number alterations in leukemia, with information about breakpoints and genes involved in the alterations, and that genome-wide microarray analyses with aCGH and SNP-array are advantageous methods in the research and diagnosis of leukemia. The most important findings were the cryptic changes detected with aCGH in karyotypically normal AML and CLL, characterization of amplified genes in 11q marker chromosomes, detection of deletion-based mechanisms of MLL-ARHGEF12 fusion gene formation, and detection of LOH without copy number alteration in karyotypically normal AML. These alterations harbor candidate oncogenes and tumor suppressors for further studies.
Resumo:
Large-scale chromosome rearrangements such as copy number variants (CNVs) and inversions encompass a considerable proportion of the genetic variation between human individuals. In a number of cases, they have been closely linked with various inheritable diseases. Single-nucleotide polymorphisms (SNPs) are another large part of the genetic variance between individuals. They are also typically abundant and their measuring is straightforward and cheap. This thesis presents computational means of using SNPs to detect the presence of inversions and deletions, a particular variety of CNVs. Technically, the inversion-detection algorithm detects the suppressed recombination rate between inverted and non-inverted haplotype populations whereas the deletion-detection algorithm uses the EM-algorithm to estimate the haplotype frequencies of a window with and without a deletion haplotype. As a contribution to population biology, a coalescent simulator for simulating inversion polymorphisms has been developed. Coalescent simulation is a backward-in-time method of modelling population ancestry. Technically, the simulator also models multiple crossovers by using the Counting model as the chiasma interference model. Finally, this thesis includes an experimental section. The aforementioned methods were tested on synthetic data to evaluate their power and specificity. They were also applied to the HapMap Phase II and Phase III data sets, yielding a number of candidates for previously unknown inversions, deletions and also correctly detecting known such rearrangements.
Resumo:
Extraintestinal pathogenic Escherichia coli (ExPEC) represent a diverse group of strains of E. coli, which infect extraintestinal sites, such as the urinary tract, the bloodstream, the meninges, the peritoneal cavity, and the lungs. Urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC), the major subgroup of ExPEC, are among the most prevalent microbial diseases world wide and a substantial burden for public health care systems. UTIs are responsible for serious morbidity and mortality in the elderly, in young children, and in immune-compromised and hospitalized patients. ExPEC strains are different, both from genetic and clinical perspectives, from commensal E. coli strains belonging to the normal intestinal flora and from intestinal pathogenic E. coli strains causing diarrhea. ExPEC strains are characterized by a broad range of alternate virulence factors, such as adhesins, toxins, and iron accumulation systems. Unlike diarrheagenic E. coli, whose distinctive virulence determinants evoke characteristic diarrheagenic symptoms and signs, ExPEC strains are exceedingly heterogeneous and are known to possess no specific virulence factors or a set of factors, which are obligatory for the infection of a certain extraintestinal site (e. g. the urinary tract). The ExPEC genomes are highly diverse mosaic structures in permanent flux. These strains have obtained a significant amount of DNA (predictably up to 25% of the genomes) through acquisition of foreign DNA from diverse related or non-related donor species by lateral transfer of mobile genetic elements, including pathogenicity islands (PAIs), plasmids, phages, transposons, and insertion elements. The ability of ExPEC strains to cause disease is mainly derived from this horizontally acquired gene pool; the extragenous DNA facilitates rapid adaptation of the pathogen to changing conditions and hence the extent of the spectrum of sites that can be infected. However, neither the amount of unique DNA in different ExPEC strains (or UPEC strains) nor the mechanisms lying behind the observed genomic mobility are known. Due to this extreme heterogeneity of the UPEC and ExPEC populations in general, the routine surveillance of ExPEC is exceedingly difficult. In this project, we presented a novel virulence gene algorithm (VGA) for the estimation of the extraintestinal virulence potential (VP, pathogenicity risk) of clinically relevant ExPECs and fecal E. coli isolates. The VGA was based on a DNA microarray specific for the ExPEC phenotype (ExPEC pathoarray). This array contained 77 DNA probes homologous with known (e.g. adhesion factors, iron accumulation systems, and toxins) and putative (e.g. genes predictably involved in adhesion, iron uptake, or in metabolic functions) ExPEC virulence determinants. In total, 25 of DNA probes homologous with known virulence factors and 36 of DNA probes representing putative extraintestinal virulence determinants were found at significantly higher frequency in virulent ExPEC isolates than in commensal E. coli strains. We showed that the ExPEC pathoarray and the VGA could be readily used for the differentiation of highly virulent ExPECs both from less virulent ExPEC clones and from commensal E. coli strains as well. Implementing the VGA in a group of unknown ExPECs (n=53) and fecal E. coli isolates (n=37), 83% of strains were correctly identified as extraintestinal virulent or commensal E. coli. Conversely, 15% of clinical ExPECs and 19% of fecal E. coli strains failed to raster into their respective pathogenic and non-pathogenic groups. Clinical data and virulence gene profiles of these strains warranted the estimated VPs; UPEC strains with atypically low risk-ratios were largely isolated from patients with certain medical history, including diabetes mellitus or catheterization, or from elderly patients. In addition, fecal E. coli strains with VPs characteristic for ExPEC were shown to represent the diagnostically important fraction of resident strains of the gut flora with a high potential of causing extraintestinal infections. Interestingly, a large fraction of DNA probes associated with the ExPEC phenotype corresponded to novel DNA sequences without any known function in UTIs and thus represented new genetic markers for the extraintestinal virulence. These DNA probes included unknown DNA sequences originating from the genomic subtractions of four clinical ExPEC isolates as well as from five novel cosmid sequences identified in the UPEC strains HE300 and JS299. The characterized cosmid sequences (pJS332, pJS448, pJS666, pJS700, and pJS706) revealed complex modular DNA structures with known and unknown DNA fragments arranged in a puzzle-like manner and integrated into the common E. coli genomic backbone. Furthermore, cosmid pJS332 of the UPEC strain HE300, which carried a chromosomal virulence gene cluster (iroBCDEN) encoding the salmochelin siderophore system, was shown to be part of a transmissible plasmid of Salmonella enterica. Taken together, the results of this project pointed towards the assumptions that first, (i) homologous recombination, even within coding genes, contributes to the observed mosaicism of ExPEC genomes and secondly, (ii) besides en block transfer of large DNA regions (e.g. chromosomal PAIs) also rearrangements of small DNA modules provide a means of genomic plasticity. The data presented in this project supplemented previous whole genome sequencing projects of E. coli and indicated that each E. coli genome displays a unique assemblage of individual mosaic structures, which enable these strains to successfully colonize and infect different anatomical sites.
Resumo:
Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of the central nervous system (CNS) affecting 0.1-0.2% of Northern European descent population. MS is considered to be a multifactorial disease, both environment and genetics play a role in its pathogenesis. Despite several decades of intense research, the etiological and pathogenic mechanisms underlying MS remain still largely unknown and no curative treatment exists. The genetic architecture underlying MS is complex with multiple genes involved. The strongest and the best characterized predisposing genetic factors for MS are located, as in other immune-mediated diseases, in the major histocompatibility complex (MHC) on chromosome 6. In humans MHC is called human leukocyte antigen (HLA). Alleles of the HLA locus have been found to associate strongly with MS and remained for many years the only consistently replicable genetic associations. However, recently other genes located outside the MHC region have been proposed as strong candidates for susceptibility to MS in several studies. In this thesis a new genetic locus located on chromosome 7q32, interferon regulatory factor 5 (IRF5), was identified in the susceptibility to MS. In particular, we found that common variation of the gene was associated with the disease in three different populations, Spanish, Swedish and Finnish. We also suggested a possible functional role for one of the risk alleles with impact on the expression of the IRF5 locus. Previous studies have pointed out a possible role played by chromosome 2q33 in the susceptibility to MS and other autoimmune disorders. The work described here also investigated the involvement of this chromosomal region in MS predisposition. After the detection of genetic association with 2q33 (article-1), we extended our analysis through fine-scale single nucleotide polymorphism (SNP) mapping to define further the contribution of this genomic area to disease pathogenesis (article-4). We found a trend (p=0.04) for association to MS with an intronic SNP located in the inducible T-cell co-stimulator (ICOS) gene, an important player in the co-stimulatory pathway of the immune system. Expression analysis of ICOS revealed a novel, previously uncharacterized, alternatively spliced isoform, lacking the extracellular domain that is needed for ligand binding. The stability of the newly-identified transcript variant and its subcellular localization were analyzed. These studies indicated that the novel isoform is stable and shows different subcellular localization as compared to full-length ICOS. The novel isoform might have a regulatory function, but further studies are required to elucidate its function. Chromosome 19q13 has been previously suggested as one of the genomic areas involved in MS predisposition. In several populations, suggestive linkage signals between MS predisposition and 19q13 have been obtained. Here, we analysed the role of allelic variation in 19q13 by family based association analysis in 782 MS families collected from Finland. In this dataset, we were not able to detect any statistically significant associations, although several previously suggested markers were included to the analysis. Replication of the previous findings on the basis of linkage disequilibrium between marker allele and disease/risk allele appears notoriously difficult because of limitations such as allelic heterogeneity. Re-sequencing based approaches may be required for elucidating the role of chromosome 19q13 with MS. This thesis has resulted in the identification of a new MS susceptibility locus (IRF5) previously associated with other inflammatory or autoimmune disorders, such as SLE. IRF5 is one of the mediators of interferons biological function. In addition to providing new insight in the possible pathogenetic pathway of the disease, this finding suggests that there might be common mechanisms between different immune-mediated disorders. Furthermore the work presented here has uncovered a novel isoform of ICOS, which may play a role in regulatory mechanisms of ICOS, an important mediator of lymphocyte activation. Further work is required to uncover its functions and possible involvement of the ICOS locus in MS susceptibility.
Resumo:
The worldwide health burden caused by the tobacco epidemic highlights the importance of study-ing determinants of smoking behaviour and key factors sustaining nicotine dependence. Despite vast-ranging preventive efforts, smoking remains one of the most deleterious health behaviours, and its genetic and environmental factors warrant continuous investigation. The heritability of smoking behaviour and nicotine dependence has been suggested to be relatively high. Earlier smoking behaviour, nicotine dependence, socio-economic position and demographic factors have all been shown to be associated with smoking cessation. This thesis aimed to examine various aspects of smoking behaviour and nicotine dependence from an epidemiological and genetic per-spective. Data for Studies I and IV were obtained from the Older Finnish Twin Cohort, a postal health sur-vey conducted in 1975, 1981 and 1990 on same-sexed pairs and in 1996-1997 on male-female adult pairs. The number of ever-smoking participants was 8941 in Study I and 3069 in Study IV. Data for Studies II and III came from the Family Study of Cigarette Smoking - Vulnerability to Nicotine Addiction. This study is linked to the Older Finnish Twin Cohort with new data collec-tion during 2001-2006 that focused on smoking twin pairs and their family members. The meas-ures included intensive telephone interviews, blood samples and additional postal questionnaires. The numbers of ever-smoking participants was 1370 in Study II and 529 in Study III. Study I examined whether a genetic component underlies smoking behaviour among Finnish adults. Genetic factors were important in the amount smoked and smoking cessation, with about half of the phenotypic differences explained by genetic variance. A novel finding was that genetic influences on amount smoked and smoking cessation were largely independent of genetic influ-ences on age at initiation. This result has implications for defining phenotypes in the search for genes underlying smoking behaviour. Furthermore, even if smoking initiation is postponed to a later age, potential vulnerability to subsequent nicotine dependence cannot be completely inhib-ited. Study II investigated the effect of genetic and environmental factors on nicotine dependence, as measured by the novel multidimensional Nicotine Dependence Syndrome Scale (NDSS). This scale was validated in the Finnish data. The NDSS correlated highly with other established nico-tine dependence scales (FTND and DSM-IV), suggesting that this new scale would be a feasible and valid measure for identifying nicotine-dependent smokers among the ever-smoking popula-tion. About one-third of the phenotypic variation in nicotine dependence in this sample was ex-plained by genetic influences. Study III aimed at identifying chromosomal regions harbouring genes that influence smoking be-haviour and nicotine dependence. Linkage analysis of family data revealed that for smoker and nicotine dependence phenotypes as well as for co-morbidity between nicotine dependence and alcohol use signals on specific chromosome regions (chromosomes 2q33, 5q12, 5q34 7q21, 7q31, 10q25, 11p15, 20p13) exist. Results further support the hypothesis that smoking behaviour phe-notypes have a genetic background. Study IV examined associations of smoking behaviour, socio-economic position and transition of marital status with smoking cessation. Indicators of socio-economic position were important pre-dictors of smoking cessation even when adjusted for previous smoking behaviour. Getting married was associated with an increased probability of cessation in men, a finding confirmed among dis-cordant twin pairs. Thus, having a partner appears to have a positive impact on smoking cessation. In conclusion, nicotine dependence and smoking behaviour demonstrate significant genetic liabil-ity, but also substantial environmental influences among Finnish adults. Smoking initiation should be prevented or at least postponed to a later age. Although genetic factors are important in nicotine dependence and smoking behaviour, societal actions still have a primary role in tobacco control and smoking prevalence. Future studies should examine the complex interactions between genetic and environmental factors in nicotine dependence.
Resumo:
Developmental dyslexia is a specific reading disability, which is characterised by unexpected difficulty in reading, spelling and writing despite adequate intelligence, education and social environment. It is the most common childhood learning disorder affecting 5-10 % of the population and thus constitutes the largest portion of all learning disorders. It is a persistent developmental failure although it can be improved by compensation. According to the most common theory, the deficit is in phonological processing, which is needed in reading when the words have to be divided into phonemes, or distinct sound elements. This occurs in the lowest level of the hierarchy of the language system and disturbs processes in higher levels, such as understanding the meaning of words. Dyslexia is a complex genetic disorder and previous studies have found nine locations in the genome that associate with it. Altogether four susceptibility genes have been found and this study describes the discovery of the first two of them, DYX1C1 and ROBO1. The first clues were obtained from two Finnish dyslexic families that have chromosomal translocations which disrupt these genes. Genetic analyses supported their role in dyslexia: DYX1C1 associates with dyslexia in the Finnish population and ROBO1 was linked to dyslexia in a large Finnish pedigree. In addition a genome-wide scan in Finnish dyslexic families was performed. This supported the previously detected dyslexia locus on chromosome 2 and revealed a new locus on chromosome 7. Dyslexia is a neurological disorder and the neurobiological function of the susceptibility genes DYX1C1 and ROBO1 are consistent with this. ROBO1 is an axon guidance receptor gene, which is involved in axon guidance across the midline in Drosophila and axonal pathfinding between the two hemispheres via the corpus callosum, as well as neuronal migration in the brain of mice. The translocation and decreased ROBO1 expression in dyslexic individuals indicate that two functional copies of ROBO1 gene are required in reading. DYX1C1 was a new gene without a previously known function. Inhibition of Dyx1c1 expression showed that it is needed in normal brain development in rats. Without Dyx1c1 protein, the neurons in the developing brain will not migrate to their final position in the cortex. These two dyslexia susceptibility genes DYX1C1 and ROBO1 revealed two distinct neurodevelopmental mechanisms of dyslexia, axonal pathfinding and neuronal migration. This study describes the discovery of the genes and our research to clarify their role in developmental dyslexia.
Resumo:
Over the past years, much research on sarcomas based on low-resolution cytogenetic and molecular cytogenetic methods has been published, leading to the identification of genetic abnormalities partially underlying the tumourigenesis. Continued progress in the identification of genetic events such as copy number aberrations relies upon adapting the rapidly evolving high-resolution microarray technology, which will eventually provide novel insights into sarcoma biology, and targets for both diagnostics and drug development. The aim of this Thesis was to characterize DNA copy number changes that are involved in the pathogenesis of soft tissue leiomyosarcoma (LMS), dermatofibrosarcoma protuberans (DFSP), osteosarcoma (OS), malignant fibrous histiocytoma (MFH), and uterine leiomyosarcoma (ULMS) by applying fine resolution array comparative genomic hybridization (aCGH) technology. Both low- and high-grade LMS tumours showed distinct copy number patterns, in addition to sharing two minimal common regions of gains and losses. Small aberrations were detected by aCGH, which were beyond the resolution of chromosomal comparative genomic hybridization (cCGH). DFSP tumours analysed by aCGH showed gains in 17q, 22q, and 21 additional gained regions, but only one region (22q) with copy number loss. Recurrent amplicons identified in OS by aCGH were 12q11-q15, 8q, 6p12-p21, and 17p. Amplicons 12q and 17p were further characterized in detail. The amplicon at 17p was characterized by aCGH in low- and high-grade LMS, OS, and MFH. In all but one case this amplicon, with minimal common regions of gains at 17p11-p12, started with the distal loss of 17p13-pter. OS and high-grade LMS were grouped together as they showed a complex pattern of copy number gains and amplifications at 17p, whereas MFH and low-grade LMS showed a continuous pattern of copy number gains and amplification at 17p. In addition to the commonly gained and lost regions identified in ULMS by aCGH, various biological processes affected by these copy number changes were also indicated by pathway analysis. The three novel findings obtained in this work were: characterization of amplicon 17p in low- and high-grade LMS and MFH, profiles of DNA copy number changes in LMS, and detection of various pathways affected by copy number changes in ULMS. These studies have not been undertaken previously by aCGH technology, thus this Thesis adds new information regarding DNA copy number changes in sarcomas. In conclusion, the aCGH technique used in this Thesis has provided new insights into the genetics of sarcomas by detecting the precise regions affected by copy number changes and some potential candidate target genes within those regions, which had not been uncovered by previously applied low resolution techniques.
Resumo:
In this study, a predisposing gene for a recently characterized cancer syndrome, hereditary leiomyomatosis and renal cell cancer (HLRCC), was identified and the role of the gene was investigated in other familial cancers and in nonsyndromic tumorigenesis. HLRCC is a dominantly inherited disorder predisposing predominantly to uterine and skin leiomyomas, and also to renal cell cancer and uterine leiomyosarcoma. The disease gene was recently localized in Finnish families to 1q42-q43 by a genome-wide linkage search. Independently in the UK, a clinically similar condition, multiple cutaneous and uterine leiomyomata (MCUL), was linked to the same chromosomal region, strongly suggesting that HLRCC and MCUL are actually a single syndrome. Linkage results were confirmed by detecting loss of heterozygosity (LOH) at the disease locus in most of the patients' tumors, suggesting that this predisposing gene acts as a tumor suppressor. Through detailed investigation by genotyping of microsatellite markers and haplotype construction in Finnish and UK HLRCC/MCUL families we were able to narrow the disease locus down to 1.6 Mb. Extensive mutation screening of known and predicted transcripts in the target region resulted in identification of the HLRCC predisposing gene, fumarase (fumarate hydratase, FH). FH is a key enzyme in energy metabolism, catalyzing fumarate to malate in the tricarboxylic acid cycle (TCAC) in mitochondria. Germline alterations in FH segregating with the disease were detected in 25 of 42 HLRCC/MCUL families including whole-gene deletions, truncating small deletions/insertions and nonsense mutations, as well as substitutions or deletions of highly conserved amino acids. Biallelic inactivation was detected in almost all studied tumors of HLRCC patients. Furthermore, FH enzyme activity was reduced in the patients' normal tissues and was completely or virtually absent from tumors. Based on these findings, we extensively demonstrated that mutations in FH underlie the HLRCC/MCUL syndrome. In our studies of other familial cancers, evidence for involvement of FH defects was not found in familial prostate and breast cancers. To investigate the role of FH in sporadic tumorigenesis, we analyzed 652 lesions, including a series of 353 nonsyndromic counterparts of tumor types associated with HLRCC. Mutations in nonsyndromic tumors were rare and appeared to be limited to tumor types observed in the hereditary form of the disease. Biallelic inactivation of FH was detected in a uterine leiomyosarcoma, a cutaneous leiomyoma, a soft-tissue sarcoma, and in two uterine leiomyomas. In the uterine leiomyosarcoma and the cutaneous lesion FH mutations originated from the germline whereas the soft-tissue sarcoma harbored purely somatic changes. In uterine leiomyomas somatic mutations were detected in the two out of five tumors with LOH at the FH locus. Our findings demonstrate that FH inactivation is also involved in nonhereditary tumor development, and further support the hypothesis that FH acts as a tumor suppressor. The role of FH in predisposition to malignancies, renal cell carcinoma and leiomyosarcoma is important in the diagnosis and prevention of cancer among HLRCC patients. This study is of general clinical interest, because prior to our findings, little was known about the molecular genetics of uterine leiomyomas, the most common tumors of women.
Resumo:
Human growth and attained height are determined by a combination of genetic and environmental effects and in modern Western societies > 80% of the observed variation in height is determined by genetic factors. Height is a fundamental human trait that is associated with many socioeconomic and psychosocial factors and health measures, however little is known of the identity of the specific genes that influence height variation in the general population. This thesis work aimed to identify the genetic variants that influence height in the general population by genome-wide linkage analysis utilizing large family samples. The study focused on analysis of three separate sets of families consisting of: 1) 1,417 individuals from 277 Finnish families (FinnHeight), 2) 8,450 individuals from 3,817 families from Australia and Europe (EUHeight) and 3) 9,306 individuals from 3,302 families from the United States (USHeight). The most significant finding in this study was found in the Finnish family sample where we a locus in the chromosomal region 1p21 was linked to adult height. Several regions showed evidence for linkage in the Australian, European and US families with 8q21 and 15q25 being the most significant. The region on 1p21 was followed up with further studies and we were able to show that the collagen 11-alpha-1 gene (COL11A1) residing at this location was associated with adult height. This association was also confirmed in an independent Finnish population cohort (Health 2000) consisting of 6,542 individuals. From this population sample, we estimated that homozygous males and females for this gene variant were 1.1 and 0.6 cm taller than the respective controls. In this thesis work we identified a gene variant in the COL11A1 gene that influences human height, although this variant alone explains only 0.1% of height variation in the Finnish population. We also demonstrated in this study that special stratification strategies such as performing sex-limited analyses, focusing on dizygous twin pairs, analyzing ethnic groups within a population separately and utilizing homogenous populations such as the Finns can improve the statistical power of finding QTL significantly. Also, we concluded from the results of this study that even though genetic effects explain a great proportion of height variance, it is likely that there are tens or even hundreds of genes with small individual effects underlying the genetic architecture of height.
Resumo:
Celiac disease, or gluten intolerance, is triggered by dietary glutens in genetically susceptible individuals and it affects approximately 1% of the Caucasian population. The best known genetic risk factors for celiac disease are HLA DQ2 and DQ8 heterodimers, which are necessary for the development of the disease. However, they alone are not sufficient for disease induction, other risk factors are required. This thesis investigated genetic factors for celiac disease, concentrating on susceptibility loci on chromosomes 5q31-q33, 19p13 and 2q12 previously reported in genome-wide linkage and association studies. In addition, a novel genotyping method for the detection of HLA DQ2 and DQ8 coding haplotypes was validated. This study was conducted using Finnish and Hungarian family materials, and Finnish, Hungarian and Italian case-control materials. Genetic linkage and association were analysed in these materials using candidate gene and fine-mapping approaches. The results confirmed linkage to celiac disease on the chromosomal regions 5q31-q33 and 19p13. Fine-mapping on chromosome 5q31-q33 revealed several modest associations in the region, and highlighted the need for further investigations to locate the causal risk variants. The MYO9B gene on chromosome 19p13 showed evidence for linkage and association particularly with dermatitis herpetiformis, the skin manifestation of celiac disease. This implies a potential difference in the genetic background of the intestinal and skin forms of the disease, although studies on larger samplesets are required. The IL18RAP locus on chromosome 2q12, shown to be associated with celiac disease in a previous genome-wide association study and a subsequent follow-up, showed association in the Hungarian population in this study. The expression of IL18RAP was further investigated in small intestinal tissue and in peripheral blood mononuclear cells. The results showed that IL18RAP is expressed in the relevant tissues. Two putative isoforms of IL18RAP were detected by Western blot analysis, and the results suggested that the ratios and total levels of these isoforms may contribute to the aetiology of celiac disease. A novel genotyping method for celiac disease-associated HLA haplotypes was also validated in this thesis. The method utilises single-nucleotide polymorphisms tagging these HLA haplotypes with high sensitivity and specificity. Our results suggest that this method is transferable between populations, and it is suitable for large-scale analysis. In conclusion, this doctorate study provides an insight into the roles of the 5q31-q33, MYO9B, IL18RAP and HLA loci in the susceptibility to celiac disease in the Finnish, Hungarian and Italian populations, highlighting the need for further studies at these genetic loci and examination of the function of the candidate genes.
Resumo:
Germline mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell cancer (HLRCC). FH is a nuclear encoded enzyme which functions in the Krebs tricarboxylic acid cycle, and homozygous mutation in FH lead to severe developmental defects. Both uterine and cutaneous leiomyomas are components of the HLRCC phenotype. Most of these tumours show loss of the wild-type allele and, also, the mutations reduce FH enzyme activity, which indicate that FH is a tumour suppressor gene. The renal cell cancers associated with HLRCC are of rare papillary type 2 histology. Other genes involved in the Krebs cycle, which are also implicated in neoplasia are 3 of the 4 subunits encoding succinate dehydrogenase (SDH); mutations in SHDB, SDHC, and SDHD predispose to paraganglioma and phaeochromocytoma. Although uterine leiomyomas (or fibroids) are very common, the estimations of affected women ranging from 25% to 77%, not much is known about their genetic background. Cytogenetic studies have revealed that rearrangements involving chromosomes 6, 7, 12 and 14 are most commonly seen in fibroids. Deletions on the long arm of chromosome 7 have been reported to be involved in about 17 to 34 % of leiomyomas and the small commonly deleted region on 7q22 suggests that there might be an underlying tumour suppressor gene in that region. The purpose of this study was to investigate the genetic mechanisms behind the development of tumours associated with HLRCC, both renal cell cancer and uterine fibroids. Firstly, a database search at the Finnish cancer registry was conducted in order to identify new families with early-onset RCC and to test if the family history was compatible with HLRCC. Secondly, sporadic uterine fibroids were tested for deletions on 7q in order to define the minimal deleted 7q-region, followed by mutation analysis of the candidate genes. Thirdly, oligonucleotide chips were utilised to study the global gene expression profiles of uterine fibroids in order to test whether 7q-deletions and FH mutations significantly affected fibroid biology. In the screen for early-onset RCC, 214 families were identified. Subsequently, the pedigrees were constructed and clinical data obtained. One of the index cases (RCC at the age of 28) had a mother who had been diagnosed with a heart tumour, which in further investigation turned out to be a paraganglioma. This lead to an alternative hypothesis that SDH, instead of FH, could be involved. SDHA, SDHB, SDHC and SDHD were sequenced from these individuals; a germline SDHB R27X mutation was detected with loss of the wild-type allele in both tumours. These results suggest that germline mutations in the SDHB gene predispose to early-onset RCC establishing a novel form of hereditary RCC. This has immediate clinical implications in the surveillance of patients suffering from early-onset RCC and phaeochromocytoma/paraganglioma. For the studies on sporadic uterine fibroids, a set of 166 fibroids from 51 individuals were collected. The 7q LOH mapping defined a commonly deleted region of about 3.2 mega bases in 11 of the 166 tumours. The deletion was consistent with previously reported allelotyping studies of leiomyomas and it therefore suggested the presence of a tumour suppressor gene in the deleted region. Furthermore, the high-resolution aCGH-chip analysis refined the deleted region to only 2.79Mb. When combined with previous data, the commonly deleted region was only 2.3Mb. The mutation screening of the known genes within the commonly deleted region did not reveal pathogenic mutations, however. The expression microarray analysis revealed that FH-deficient fibroids, both sporadic and familial, had their distinct gene expression profile as they formed their own group in the unsupervised clustering. On the other hand, the presence or absence of 7q-deletions did not significantly alter the global gene expression pattern of fibroids, suggesting that these two groups do not have different biological backgrounds. Multiple differentially expressed genes were identified between FH wild-type and FH-mutant fibroids, and the most significant increase was seen in the expression of carbohydrate metabolism-related and hypoxia inducible factor (HIF) target genes.
Resumo:
Glaucoma is the second leading cause of blindness worldwide. It is a group of optic neuropathies, characterized by progressive optic nerve degeneration, excavation of the optic disc due to apoptosis of retinal ganglion cells and corresponding visual field defects. Open angle glaucoma (OAG) is a subtype of glaucoma, classified according to the age of onset into juvenile and adult- forms with a cut-off point of 40 years of age. The prevalence of OAG is 1-2% of the population over 40 years and increases with age. During the last decade several candidate loci and three candidate genes, myocilin (MYOC), optineurin (OPTN) and WD40-repeat 36 (WDR36), for OAG have been identified. Exfoliation syndrome (XFS), age, elevated intraocular pressure and genetic predisposition are known risk factors for OAG. XFS is characterized by accumulation of grayish scales of fibrillogranular extracellular material in the anterior segment of the eye. XFS is overall the most common identifiable cause of glaucoma (exfoliation glaucoma, XFG). In the past year, three single nucleotide polymorphisms (SNPs) on the lysyl oxidase like 1 (LOXL1) gene have been associated with XFS and XFG in several populations. This thesis describes the first molecular genetic studies of OAG and XFS/XFG in the Finnish population. The role of the MYOC and OPTN genes and fourteen candidate loci was investigated in eight Finnish glaucoma families. Both candidate genes and loci were excluded in families, further confirming the heterogeneous nature of OAG. To investigate the genetic basis of glaucoma in a large Finnish family with juvenile and adult onset OAG, we analysed the MYOC gene in family members. Glaucoma associated mutation (Thr377Met) was identified in the MYOC gene segregating with the disease in the family. This finding has great significance for the family and encourages investigating the MYOC gene also in other Finnish OAG families. In order to identify the genetic susceptibility loci for XFS, we carried out a genome-wide scan in the extended Finnish XFS family. This scan produced promising candidate locus on chromosomal region 18q12.1-21.33 and several additional putative susceptibility loci for XFS. This locus on chromosome 18 provides a solid starting point for the fine-scale mapping studies, which are needed to identify variants conferring susceptibility to XFS in the region. A case-control and family-based association study and family-based linkage study was performed to evaluate whether SNPs in the LOXL1 gene contain a risk for XFS, XFG or POAG in the Finnish patients. A significant association between the LOXL1 gene SNPs and XFS and XFG was confirmed in the Finnish population. However, no association was detected with POAG. Probably also other genetic and environmental factors are involved in the pathogenesis of XFS and XFG.
Resumo:
Hereditary nonpolyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP) are characterized by a high risk and early onset of colorectal cancer (CRC). HNPCC is due to a germline mutation in one of the following MMR genes: MLH1, MSH2, MSH6 and PMS2. A majority of FAP and attenuated FAP (AFAP) cases are due to germline mutations of APC, causing the development of multiple colorectal polyps. To date, over 450 MMR gene mutations and over 800 APC mutations have been identified. Most of these mutations lead to a truncated protein, easily detected by conventional mutation detection methods. However, in about 30% of HNPCC and FAP, and about 90% of AFAP families, mutations remain unknown. We aimed to clarify the genetic basis and genotype-phenotype correlation of mutation negative HNPCC and FAP/AFAP families by advanced mutation detection methods designed to detect large genomic rearrangements, mRNA and protein expression alterations, promoter mutations, phenotype linked haplotypes, and tumoral loss of heterozygosity. We also aimed to estimate the frequency of HNPCC in Uruguayan CRC patients. Our expression based analysis of mutation negative HNPCC divided these families into two categories: 1) 42% of families linked to the MMR genes with a phenotype resembling that of mutation positive, and 2) 58% of families likely to be associated with other susceptibility genes. Unbalanced mRNA expression of MLH1 was observed in two families. Further studies revealed that a MLH1 nonsense mutation, R100X was associated with aberrant splicing of exons not related to the mutation and an MLH1 deletion (AGAA) at nucleotide 210 was associated with multiple exon skipping, without an overall increase in the frequency of splice events. APC mutation negative FAP/AFAP families were divided into four groups according to the genetic basis of their predisposition. Four (14%) families displayed a constitutional deletion of APC with profuse polyposis, early age of onset and frequent extracolonic manifestations. Aberrant mRNA expression of one allele was observed in seven (24%) families with later onset and less frequent extracolonic manifestations. In 15 (52%) families the involvement of APC could neither be confirmed nor excluded. In three (10%) of the families a germline mutation was detected in genes other than APC: AXIN2 in one family, and MYH in two families. The families with undefined genetic basis and especially those with AXIN2 or MYH mutations frequently displayed AFAP or atypical polyposis. Of the Uruguayan CRC patients, 2.6% (12/461) fulfilled the diagnostic criteria for HNPCC and 5.6% (26/461) were associated with increased risk of cancer. Unexpectedly low frequency of molecularly defined HNPCC cases may suggest a different genetic profile in the Uruguayan population and the involvement of novel susceptibility genes. Accurate genetic and clinical characterization of families with hereditary colorectal cancers, and the definition of the genetic basis of "mutation negative" families in particular, facilitate proper clinical management of such families.