12 resultados para Central nervous system - Effect of drugs on

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human central nervous system (CNS) tumors are a heterogeneous group of tumors occurring in brain, brainstem and spinal cord. Malignant gliomas (astrocytic and oligodendroglial tumors), which arise from the neuroepithelial cells are the most common CNS neoplasms in human. Malignant gliomas are highly aggressive and invasive tumors, and have a very poor prognosis. The development and progression of gliomas involve a stepwise accumulation of genetic alterations that generally affect either signal transduction pathways activated by receptor tyrosine kinases (RTKs), or cell cycle arrest pathways. Constitutive activation or deregulated signaling by RTKs is caused by gene amplification, overexpression or mutations. The aberrant RTK signaling results in turn in the activation of several downstream pathways, which ultimately lead to malignant transformation and tumor proliferation. Many genetic abnormalities implicated in nervous system tumors involve the genes located at the chromosomal region 4q12. This locus harbors the receptor tyrosine kinases KIT, PDGFRA and VEGFR2, and other genes (REST, LNX1) with neural function. Gene amplification and protein expression of KIT, PDGFRA, and VEGFR2 was studied using clinical tumor material. REST and LNX1, as well as NUMBL, the interaction partner of LNX1, were studied for their gene mutations and amplifications. In our studies, amplification of LNX1 was associated with KIT and PDGFRA amplification in glioblastomas, and coamplification of KIT, PDGFRA and VEGFR2 was detected in medulloblastomas and CNS primitive neuroectodermal tumors. PDGFRA amplification was also correlated with poor overall survival. Coamplification of KIT, PDGFRA and VEGFR2 was observed in a subset of human astrocytic and oligodendroglial tumors. We suggest that genes at 4q12 could be a part of a larger amplified region, which is deregulated in gliomas, and could be used as a prognostic marker of tumorigenic process. The signaling pathways activated due to gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment. This study also includes the characterization of KIT overexpressing astrocytes, analyzed by various in vitro functional assays. Our results show that overexpression of KIT in mouse astrocytes promotes cell proliferation and anchorage-independent growth, as well as phenotypic changes in the cells. Furthermore, the increased proliferation is partly inhibited by imatinib, a small molecule inhibitor of KIT. These results suggest that KIT may play a role in astrocyte growth regulation, and might have an oncogenic role in brain tumorigenesis. Elucidation of the altered signaling pathways due to specific gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the 1980 s, laminin-1 has been linked to regeneration of the central nervous system (CNS) and promotion of neuronal migration and axon guidance during CNS development. In this thesis, we clarify the role of γ1 laminin and its KDI tripeptide in development of human embryonic spinal cord, in regeneration of adult rat spinal cord injury (SCI), in kainic acid-induced neuronal death, and in the spinal cord tissue of amyotrophic lateral sclerosis (ALS). We demonstrated that γ1 laminin together with α1, β1, and β3 laminins localize at the floor plate region in human embryonic spinal cord. This localization of γ1 laminin is in spatial and temporal correlation with development of the spinal cord and indicates that γ1 laminin may participate in commissural axon guidance during the embryonic development of the human CNS. With in vitro studies using the Matrigel culture system, we demonstrated that the KDI tripeptide of γ1 laminin provides a chemotrophic guidance cue for neurites of the human embryonic dorsal spinal cord, verifying the functional ability of γ1 laminin to guide commissural axons. Results from our experimental SCI model demonstrate that the KDI tripeptide enhanced functional recovery and promoted neurite outgrowth across the mechanically injured area in the adult rat spinal cord. Furthermore, our findings indicate that the KDI tripeptide as a non-competitive inhibitor of the ionotropic glutamate receptors can provide when administered in adequate concentrations an effective method to protect neurons against glutamate-induced excitotoxic cell death. Human postmortem samples were used to study motor neuron disease, ALS (IV), and the study revealed that in human ALS spinal cord, γ1 laminin was selectively over-expressed by reactive astrocytes, and that this over-expression may correlate with disease severity. The multiple ways by which γ1 laminin and its KDI tripeptide provide neurotrophic protection and enhance neuronal viability suggest that the over-expression of γ1 laminin may be a glial attempt to provide protection for neurons against ALS pathology. The KDI tripeptide is effective therapeutically thus far in animal models only. However, because KDI containing γ1 laminin exists naturally in the human CNS, KDI therapies are unlikely to be toxic or allergenic. Results from our animal models are encouraging, with no toxic side-effects detected even at high concentrations, but the ultimate confirmation can be achieved only after clinical trials. More research is still needed until the KDI tripeptide is refined into a clinically applicable method to treat various neurological disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The blood-brain barrier (BBB) is a unique barrier that strictly regulates the entry of endogenous substrates and xenobiotics into the brain. This is due to its tight junctions and the array of transporters and metabolic enzymes that are expressed. The determination of brain concentrations in vivo is difficult, laborious and expensive which means that there is interest in developing predictive tools of brain distribution. Predicting brain concentrations is important even in early drug development to ensure efficacy of central nervous system (CNS) targeted drugs and safety of non-CNS drugs. The literature review covers the most common current in vitro, in vivo and in silico methods of studying transport into the brain, concentrating on transporter effects. The consequences of efflux mediated by p-glycoprotein, the most widely characterized transporter expressed at the BBB, is also discussed. The aim of the experimental study was to build a pharmacokinetic (PK) model to describe p-glycoprotein substrate drug concentrations in the brain using commonly measured in vivo parameters of brain distribution. The possibility of replacing in vivo parameter values with their in vitro counterparts was also studied. All data for the study was taken from the literature. A simple 2-compartment PK model was built using the Stella™ software. Brain concentrations of morphine, loperamide and quinidine were simulated and compared with published studies. Correlation of in vitro measured efflux ratio (ER) from different studies was evaluated in addition to studying correlation between in vitro and in vivo measured ER. A Stella™ model was also constructed to simulate an in vitro transcellular monolayer experiment, to study the sensitivity of measured ER to changes in passive permeability and Michaelis-Menten kinetic parameter values. Interspecies differences in rats and mice were investigated with regards to brain permeability and drug binding in brain tissue. Although the PK brain model was able to capture the concentration-time profiles for all 3 compounds in both brain and plasma and performed fairly well for morphine, for quinidine it underestimated and for loperamide it overestimated brain concentrations. Because the ratio of concentrations in brain and blood is dependent on the ER, it is suggested that the variable values cited for this parameter and its inaccuracy could be one explanation for the failure of predictions. Validation of the model with more compounds is needed to draw further conclusions. In vitro ER showed variable correlation between studies, indicating variability due to experimental factors such as test concentration, but overall differences were small. Good correlation between in vitro and in vivo ER at low concentrations supports the possibility of using of in vitro ER in the PK model. The in vitro simulation illustrated that in the simulation setting, efflux is significant only with low passive permeability, which highlights the fact that the cell model used to measure ER must have low enough paracellular permeability to correctly mimic the in vivo situation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of temperature on height growth of Scots pine in the northern boreal zone in Lapland was studied in two different time scales. Intra-annual growth was monitored in four stands in up to four growing seasons using an approximately biweekly measurement interval. Inter-annual growth was studied using growth records representing seven stands and five geographical locations. All the stands were growing on a dry to semi-dry heath that is a typical site type for pine stands in Finland. The applied methodology is based on applied time-series analysis and multilevel modelling. Intra-annual elongation of the leader shoot correlated with temperature sum accumulation. Height growth ceased when, on average, 41% of the relative temperature sum of the site was achieved (observed minimum and maximum were 38% and 43%). The relative temperature sum was calculated by dividing the actual temperature sum by the long-term mean of the total annual temperature sum for the site. Our results suggest that annual height growth ceases when a location-specific temperature sum threshold is attained. The positive effect of the mean July temperature of the previous year on annual height increment proved to be very strong at high latitudes. The mean November temperature of the year before the previous had a statistically significantly effect on height increment in the three northernmost stands. The effect of mean monthly precipitation on annual height growth was statistically insignificant. There was a non-linear dependence between length and needle density of annual shoots. Exceptionally low height growth results in high needle-density, but the effect is weaker in years of average or good height growth. Radial growth and next year s height growth are both largely controlled by current July temperature. Nevertheless, their growth variation in terms of minimum and maximum is not necessarily strongly correlated. This is partly because height growth is more sensitive to changes in temperature. In addition, the actual effective temperature period is not exactly the same for these two growth components. Yet, there is a long-term balance that was also statistically distinguishable; radial growth correlated significantly with height growth with a lag of 2 years. Temperature periods shorter than a month are more effective variables than mean monthly values, but the improvement is on the scale of modest to good when applying Julian days or growing-degree-days as pointers.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we re-examine the relationship between overweight and labour market success, using indicators of individual body composition along with BMI (Body Mass Index). We use the dataset from Finland in which weight, height, fat mass and waist circumference are not self-reported, but obtained as part of the overall health examination. We find that waist circumference, but not weight or fat mass, has a negative effect on wages for women, whereas all measures of obesity have negative effects on women’s employment probabilities. For men, the only obesity measure that is significant for men’s employment probabilities is fat mass. One interpretation of our findings is that the negative wage effects of overweight on wages run through the discrimination channel, but that the negative effects of overweight on employment have more to do with ill health. All in all, measures of body composition provide a more refined picture about the effects of obesity on wages and employment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: GPS technology enables the visualisation of a map reader s location on a mobile map. Earlier research on the cognitive aspects of map reading identified that searching for map-environment points is an essential element for the process of determining one s location on a mobile map. Map-environment points refer to objects that are visualized on the map and are recognizable in the environment. However, because the GPS usually adds only one point to the map that has a relation to the environment, it does not provide a sufficient amount of information for self-location. The aim of the present thesis was to assess the effect of GPS on the cognitive processes involved in determining one s location on a map. Methods: The effect of GPS on self-location was studied in a field experiment. The subjects were shown a target on a mobile map, and they were asked to point in the direction of the target. In order for the map reader to be able to deduce the direction of the target, he/she has to locate himself/herself on the map. During the pointing tasks, the subjects were asked to think aloud. The data from the experiment were used to analyze the effect of the GPS on the time needed to perform the task. The subjects verbal data was used to assess the effect of the GPS on the number of landmark concepts mentioned during a task (landmark concepts are words referring to objects that can be recognized both on the map and in the environment). Results and conclusions: The results from the experiment indicate that the GPS reduces the time needed to locate oneself on a map. The analysis of the verbal data revealed that the GPS reduces the number of landmark concepts in the protocols. The findings suggest that the GPS guides the subject s search for the map-environment points and narrows the area on the map that must be searched for self-location.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cereal arabinoxylans, guar galactomannans, and dextrans produced by lactic acid bacteria(LAB) are a structurally diverse group of branched polysaccharides with nutritional and industrial functions. In this thesis, the effect of the chemical structure on the dilute solution properties of these polysaccharides was investigated using size-exclusion chromatography(SEC) and asymmetric flow field-flow fractionation (AsFlFFF) with multiple-detection. The chemical structures of arabinoxylans were determined, whereas galactomannan and dextran structures were studied in previous investigations. Characterization of arabinoxylans revealed differences in the chemical structures of cereal arabinoxylans. Although arabinoxylans from wheat, rye, and barley fiber contained similar amounts of arabinose side units, the substitution pattern of arabinoxylans from different cereals varied. Arabinoxylans from barley husks and commercial low-viscosity wheat arabinoxylan contained a lower number of arabinose side units. Structurally different dextrans were obtained from different LAB. The structural effects on the solution properties could be studied in detail by modifying pure wheat and rye arabinoxylans and guar galactomannan with specific enzymes. The solution characterization of arabinoxylans, enzymatically modified galactomannans, and dextrans revealed the presence of aggregates in aqueous polysaccharide solutions. In the case of arabinoxylans and dextrans, the comparison of molar mass data from aqueous and organic SEC analyses was essential in confirming aggregation, which could not be observed only from the peak or molar mass distribution shapes obtained with aqueous SEC. The AsFlFFF analyses gave further evidence of aggregation. Comparison of molar mass and intrinsic viscosity data of unmodified and partially debranched guar galactomannan, on the other hand, revealed the aggregation of native galactomannan. The arabinoxylan and galactomannan samples with low or enzymatically extensively decreased side unit content behaved similarly in aqueous solution: lower molar mass samples stayed in solution but formed large aggregates, whereas the water solubility of the higher-molar-mass samples decreased significantly. Due to the restricted solubility of galactomannans in organic solvents, only aqueous galactomannan solutions were studied. The SEC and AsFlFFF results differed for the wheat arabinoxylan and dextran samples. Column matrix effects and possible differences in the separation parameters are discussed, and a problem related to the non-established relationship between the separation parameters of the two separation techniques is highlighted. This thesis shows that complementary approaches in the solution characterization of chemically heterogeneous polysaccharides are needed to comprehensively investigate macromolecular behavior in solution. These results may also be valuable when characterizing other branched polysaccharides.