8 resultados para Cambial and apical meristems

em Helda - Digital Repository of University of Helsinki


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strawberries (Fragaria sp.) are adapted to diverse environmental conditions from the tropics to about 70ºN, so different responses to environmental conditions can be found. Most genotypes of garden strawberry (F. x ananassa Duch.) and woodland strawberry (F. vesca L.) are short-day (SD) plants that are induced to flowering by photoperiods under a critical limit, but also various photoperiod x temperature interactions can be found. In addition, continuously flowering everbearing (EB) genotypes are found. In addition to flowering, axillary bud differentiation in strawberry is regulated by photoperiod. In SD conditions, axillary buds differentiate to rosette-like structures called "branch crowns", whereas in long-day conditions (LD) they form runners, branches with 2 long internodes followed by a daughter plant (leaf rosette). The number of crown branches determines the yield of the plant, since inflorescences are formed from the apical meristems of the crown. Although axillary bud differentiation is an important developmental process in strawberries, its environmental and hormonal regulation has not been characterized in detail. Moreover, the genetic mechanisms underlying axillary bud differentiation and regulation of flowering time in these species are almost completely unresolved. These topics have been studied in this thesis in order to enhance strawberry research, cultivation and breeding. The results showed that 8-12 SD cycles suppressed runner initiation from the axillary buds of the garden strawberry cv. Korona with the concomitant induction of crown branching, and 3 weeks of SD was sufficient for the induction of flowering in the main crown. Furthermore, a second SD treatment given a few weeks after the first SD period can be used to induce flowering in the primary branch crowns and to induce the formation of secondary branches. Thus, artificial SD treatments effectively stimulate crown branching, providing one means for the increase of cropping (yield) potential in strawberry. It was also shown by growth regulation applications, quantitave hormone analysis and gene expression analysis that gibberellin (GA) is one of the key signals involved in the photoperiod control of shoot differentiation. The results indicate that photoperiod controls GA activity specifically in axillary buds, thereby determining bud fate. It was further shown that chemical control of GA biosynthesis by prohexadione-calcium can be utilized to prevent excessive runner formation and induce crown branching in strawberry fields. Moreover, ProCa increased berry yield up to 50%, showing that it is an easier and more applicable alternative to artificial SD treatments for controlling strawberry crown development and yield. Finally, flowering gene pathways in Fragaria were explored by searching for homologs of 118 Arabidopsis thaliana flowering-time genes. In total, 66 gene homologs were identified, and they distributed to all known flowering pathways, suggesting the presence of these pathways also in strawberry. Expression analysis of selected genes revealed that the mRNA of putative floral identity gene APETALA1 accumulated in the shoot apex of the EB genotype after the induction of flowering, whereas it was absent in vegetative SD genotype, indicating the usefulness of this gene product as the marker of floral initiation. The present data enables the further exploration of strawberry flowering pathways with genetic transformation, gene mapping and transcriptomics methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue destruction associated with the periodontal disease progression is caused by a cascade of host and microbial factors and proteolytic enzymes. Aberrant laminin-332 (Ln-332), human beta defensin (hBD), and matrix metalloproteinase (MMP) functions have been found in oral inflammatory diseases. The null-allele mouse model appears as the next step in oral disease research. The MMP-8 knock-out mouse model allowed us to clarify the involvement of MMP-8 in vivo in oral and related inflammatory diseases where MMP-8 is suggested to play a key role in tissue destruction. The cleaved Ln-332 γ2-chain species has been implicated in the apical migration of sulcular epithelial cells during the formation of periodontal pockets. We demonstrated that increased Ln-332 fragment levels in gingival crevicular fluid (GCF) are strongly associated with the severity of inflammation in periodontitis. Porphyromonas gingivalis trypsin-like proteinase can cleave an intact Ln-332 γ2-chain into smaller fragments and eventually promote the formation of periodontal pockets. hBDs are components of an innate mucosal defense against pathogenic microbes. Our results suggest that P. gingivalis trypsin-like proteinase can degrade hBD and thus reduce the innate immune response. Elevated levels and the increased activity of MMPs have been detected in several pathological tissue-destructive conditions where MMPs are shown to cleave extracellular matrix (ECM) and basement membrane (BM) molecules and to facilitate tissue destruction. Elevated levels of MMP-8 have been reported in many inflammatory diseases. In periodontitis, MMP-8 levels in gingival crevicular fluid (GCF) and in peri-implant sulcular fluid (PISF) are elevated at sites of active inflammation, and the increased levels of MMP-8 are mainly responsible for collagenase activity, which leads to tissue destruction. MMP-25, expressed by neutrophils, is involved in inflammatory diseases and in ECM turnover. MMP-26 can degrade ECM components and serve as an activator of other MMP enzymes. We further confirmed that increased levels and activation of MMP-8, -25, and -26 in GCF, PISF, and inflamed gingival tissue are associated with the severity of periodontal/peri-implant inflammation. We evaluated the role of MMP-8 in P. gingivalis-induced periodontitis by comparing MMP-8 knock-out (MMP8-/-) and wild-type mice. Surprisingly, MMP-8 significantly attenuated P. gingivalis-induced site-specific alveolar bone loss. We also evaluated systemic changes in serum immunoglobulin and lipoprotein profiles among these mouse groups. P. gingivalis infection increased HDL/VLDL particle size in the MMP-8-/- mice, which is an indicator of lipoprotein responses during systemic inflammation. Serum total LPS and IgG antibody levels were enhanced in both mice groups. P. gingivalis-induced periodontitis, especially in MMP-8-/- mice, is associated with severe alveolar bone loss and with systemic inflammatory and lipoprotein changes that are likely to be involved in early atherosclerosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secondary growth of plants is of pivotal importance in terrestrial ecosystems, providing a significant carbon sink in the form of wood. As plant biomass accumulation results largely from the cambial growth, it is surprising that quite little is known about the hormonal or genetic control of this important process in any plant species. The central aim of my thesis studies was to explore the function of cytokinin in the regulation of cambial development. Since their discovery as regulators of plant cell divisions, cytokinins have been assumed to participate in the control of cambial development. Evidence for this action was deduced from hormone treatment experiments, where exogenously applied cytokinin was shown to enhance cambial cell divisions in diverse plant organs and species. In my thesis work, the conservation of cytokinin signalling and homeostasis genes between a herbaceous plant, Arabidopsis, and a hardwood tree species, Populus trichocarpa. Presumably reflecting the ancient origin of cytokinin signalling system, the Populus genome contains orthologs for all Arabidopsis cytokinin signalling and homeostasis genes. Thus, genes belonging to five main families of isopentenyl transferases (IPTs), cytokinin oxidases (CKXs), two-component receptors, histidine containing phosphotransmitters (HPts) and response regulators (RRs) were identified from the Populus genome. Three subfamilies associated with cytokinin signal transduction, the CKI1-like family of two-component receptors, the AHP4-like HPts, and the ARR22-like atypical RRs, were significantly larger in Populus genome than in Arabidopsis. Potential contribution to the extensive secondary development of Populus by the members of these considerably expanded gene families will be discussed. Representatives of all cytokinin signal transduction elements were expressed in the Populus cambial zone, and most of the expressed genes appeared to be slightly more abundant on the phloem side of the meristem. The abundance of cytokinin related genes in the cambium emphasizes the important role of this hormone in the regulation of the extensive secondary growth characteristic of tree species. The function of the pseudo HPts in primary vascular development was studied in Arabidopsis root vasculature. It was demonstrated that the pseudo HPt AHP6 has a role in locally inhibiting cytokinin signalling in the protoxylem position in the Arabidopsis root, thus enabling differentiation of the protoxylem cell file. The possible role of pseudo HPts in cambial development will be discussed. The expression peak of cytokinin signalling genes in the tree cambial zone strongly indicates that cytokinin has a role in the regulation of this meristem function. To address whether cytokinin signalling is required for cambial activity, transgenic Populus trees with modified cytokinin signalling were produced. These trees were expressing a cytokinin catabolic gene from Arabidopsis, CYTOKININ OXIDASE 2, (AtCKX2) under the promoter of a Betula CYTOKININ RECEPTOR 1 (BpCRE1). The pBpCRE1::CKX2 transgenic Populus trees showed a reduced concentration of a biologically active cytokinin, correlating with their impaired cytokinin response. Furthermore, the radial growth of these trees was compromised, as illustrated by a smaller stem diameter than in wild-type trees of the same height. Moreover, the level of cambial cytokinin signalling was down-regulated in these thin-stemmed trees. The reduced signalling correlated with a decreased number of meristematic cambial cells, implicating cytokinin activity as a direct regulator of cambial cell division activity. Together, the results of my study indicate that cytokinins are major hormonal regulators required for cambial development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Taxonomic relationships of the liverwort genus Herbertus in Asia were examined. In addition, the phylogeny of the family Herbertaceae and its close relatives was investigated and analyses conducted of higher level relationships within the entire liverwort phylum. Species of Herbertus show great plasticity in various morphological characters, resulted in a large number of described species. This study was the first comprehensive revision of Asian Herbertus, with 12 species recognized for the continent. Eleven names were reduced to synonymy under earlier described species, and one species was excluded from the genus. Herbertus buchii Juslén was described as a new species. Phylogenetic analyses based on both molecular and morphological characters resolved the families Vetaformaceae, Lepicoleaceae, and Herbertaceae (including Mastigophoraceae) as a monophyletic entity. This clade is among the most derived groups within the leafy liverworts and comprises mostly isophyllous plants, all of which have bracteolar antheridia. The relationships of Mastigophoraceae have formerly been controversial. My results confirm the view that this family is closely related to Herbertaceae, Lepicoleaceae, and Vetaformaceae. In the proposed new classification Mastigophoraceae is included in Herbertaceae. Phylogenetic relationships within the liverworts were reconstructed using both chloroplast and nuclear sequences as well as morphological characters. These analyses were the most comprehensive to date at the time of publication. Previously it was believed that liverworts had a common ancestor with an erect, radial gametophyte and a tetrahedral apical cell. The leafy liverworts were arranged based on the assumption that similar structures had repeatedly developed in many different suborders, with evolution proceeding from erect and isophyllous to creeping and anisophyllous plants. The complex thalloid liverworts were assumed to be the most derived group. By contrast, our studies resolved a clade comprising Treubia and Haplomitrium as the earliest extant liverwort lineage. According to our results the complex thalloids are also an early diverging lineage, and the simple thalloids, traditionally classified together, are a paraphyletic group. Within leafy liverworts, the hypothesis of repeated evolution from isophyllous to anisophyllous plants based on the assumption of a basal unresolved polytomy was rejected. Fundamentally, the leafy liverworts can be divided into three groups. In conflict with the earlier hypotheses, the isophyllous liverworts, including Herbertaceae, were resolved as derived lineages within the liverworts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rare autosomal recessive disease congenital chloride diarrhea (CLD) is caused by mutations in the solute carrier family 26 member 3 (SLC26A3) gene on chromosome 7q22.3-31.1. SLC26A3 encodes for an apical epithelial chloride-bicarbonate exchanger, the intestinal loss of which leads to profuse chloride-rich diarrhea, and a tendency to hypochloremic and hypokalemic metabolic alkalosis. Although untreated CLD is usually lethal in early infancy, the development of salt substitution therapy with NaCl and KCl in the late 1960s made the disease treatable. While the salt substitution allows normal childhood growth and development in CLD, data on long-term outcome have remained unclarified. One of the world s highest incidences of CLD 1:30 000 to 1:40 000 occurs in Finland, and CLD is part of the Finnish disease heritage. We utilized a unique sample of Finnish patients to characterize the long-term outcome of CLD. Another purpose of this study was to search for novel manifestations of CLD based on the extraintestinal expression of the SLC26A3 gene. This study on a sample of 36 patients (ages 10-38) shows that the long-term outcome of treated CLD is favorable. In untreated or poorly treated cases, however, chronic contraction and metabolic imbalance may lead to renal injury and even to renal transplantation. Our results demonstrate a low-level expression of SLC26A3 in the human kidney. Although SLC26A3 may play a minor role in homeostasis, post-transplant recurrence of renal changes shows the unlikelihood of direct transporter modulation in the pathogenesis of CLD-related renal injury. Options to resolve the diarrheal symptoms of CLD have been limited. Unfortunately, our pilot trial indicated the inefficacy of oral butyrate as well. This study reveals novel manifestations of CLD. These include an increased risk for hyperuricemia, inguinal hernias, and probably for intestinal inflammation. The most notable finding of this study is CLD-associated male subfertility. This involves a low concentration of poorly motile spermatozoa with abnormal morphology, high seminal plasma chloride with a low pH, and a tendency to form spermatoceles. That SLC26A3 immunoexpression appeared at multiple sites of the male reproductive tract in part together with the main interacting proteins cystic fibrosis transmembrane conductance regulator (CFTR) and sodium-hydrogen exchanger 3 (NHE3) suggests novel sites for the cooperation of these proteins. As evidence of the cooperation, defects occurring in any of these transporters are associated with reduced male fertility. Together with a finding of high sweat chloride in CLD, this study provides novel data on extraintestinal actions of the SLC26A3 gene both in the male reproductive tract and in the sweat gland. These results provide the basis for future studies regarding the role of SLC26A3 in different tissues, especially in the male reproductive tract. Fortunately, normal spermatogenesis in CLD is likely to make artificial reproductive technologies to treat infertility and even make unassisted reproduction possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure and the mechanical properties of wood of Norway spruce (Picea abies [L.] Karst.) were studied using small samples from Finland and Sweden. X-ray diffraction (XRD) was used to determine the orientation of cellulose microfibrils (microfibril angle, MFA), the dimensions of cellulose crystallites and the average shape of the cell cross-section. X-ray attenuation and x-ray fluorescence measurements were used to study the chemical composition and the trace element content. Tensile testing with in situ XRD was used to characterise the mechanical properties of wood and the deformation of crystalline cellulose within the wood cell walls. Cellulose crystallites were found to be 192 284 Å long and 28.9 33.4 Å wide in chemically untreated wood and they were longer and wider in mature wood than in juvenile wood. The MFA distribution of individual Norway spruce tracheids and larger samples was asymmetric. In individual cell walls, the mean MFA was 19 30 degrees, while the mode of the MFA distribution was 7 21 degrees. Both the mean MFA and the mode of the MFA distribution decreased as a function of the annual ring. Tangential cell walls exhibited smaller mean MFA and mode of the MFA distribution than radial cell walls. Maceration of wood material caused narrowing of the MFA distribution and removed contributions observed at around 90 degrees. In wood of both untreated and fertilised trees, the average shape of the cell cross-section changed from circular via ambiguous to rectangular as the cambial age increased. The average shape of the cell cross-section and the MFA distribution did not change as a result of fertilisation. The mass absorption coefficient for x-rays was higher in wood of fertilised trees than in that of untreated trees and wood of fertilised trees contained more of the elements S, Cl, and K, but a smaller amount of Mn. Cellulose crystallites were longer in wood of fertilised trees than in that of untreated trees. Kraft cooking caused widening and shortening of the cellulose crystallites. Tensile tests parallel to the cells showed that if the mean MFA is initially around 10 degrees or smaller, no systematic changes occur in the MFA distribution due to strain. The role of mean MFA in defining the tensile strength or the modulus of elasticity of wood was not as dominant as that reported earlier. Crystalline cellulose elongated much less than the entire samples. The Poisson ratio νca of crystalline cellulose in Norway spruce wood was shown to be largely dependent on the surroundings of crystalline cellulose in the cell wall, varying between -1.2 and 0.8. The Poisson ratio was negative in kraft cooked wood and positive in chemically untreated wood. In chemically untreated wood, νca was larger in mature wood and in latewood compared to juvenile wood and earlywood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for functional lung imaging was introduced by adapting the K-edge subtraction method (KES) to in vivo studies of small animals. In this method two synchrotron radiation energies, which bracket the K-edge of the contrast agent, are used for simultaneous recording of absorption-contrast images. Stable xenon gas is used as the contrast agent, and imaging is performed in projection or computed tomography (CT) mode. Subtraction of the two images yields the distribution of xenon, while removing practically all features due to other structures, and the xenon density can be calculated quantitatively. Because the images are recorded simultaneously, there are no movement artifacts in the subtraction image. Time resolution for a series of CT images is one image/s, which allows functional studies. Voxel size is 0.1mm3, which is an order better than in traditional lung imaging methods. KES imaging technique was used in studies of ventilation distribution and the effects of histamine-induced airway narrowing in healthy, mechanically ventilated, and anaesthetized rabbits. First, the effect of tidal volume on ventilation was studied, and the results show that an increase in tidal volume without an increase in minute ventilation results a proportional increase in regional ventilation. Second, spiral CT was used to quantify the airspace volumes in lungs in normal conditions and after histamine aerosol inhalation, and the results showed large patchy filling defects in peripheral lungs following histamine provocation. Third, the kinetics of proximal and distal airway response to histamine aerosol were examined, and the findings show that the distal airways react immediately to histamine and start to recover, while the reaction and the recovery in proximal airways is slower. Fourth, the fractal dimensions of lungs was studied, and it was found that the fractal dimension is higher at the apical part of the lungs compared to the basal part, indicating structural differences between apical and basal lung level. These results provide new insights to lung function and the effects of drug challenge studies. Nowadays the technique is available at synchrotron radiation facilities, but the compact synchrotron radiation sources are being developed, and in relatively near future the method may be used at hospitals.