43 resultados para CANNED FOODS

em Helda - Digital Repository of University of Helsinki


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Standards have been placed to regulate the microbial and preservative contents to assure that foods are safe to the consumer. In a case of a food-related disease outbreak, it is crucial to be able to detect and identify quickly and accurately the cause of the disease. In addition, for every day control of food microbial and preservative contents, the detection methods must be easily performed for numerous food samples. In this present study, quicker alternative methods were studied for identification of bacteria by DNA fingerprinting. A flow cytometry method was developed as an alternative to pulsed-field gel electrophoresis, the golden method . DNA fragment sizing by an ultrasensitive flow cytometer was able to discriminate species and strains in a reproducible and comparable manner to pulsed-field gel electrophoresis. This new method was hundreds times faster and 200,000 times more sensitive. Additionally, another DNA fingerprinting identification method was developed based on single-enzyme amplified fragment length polymorphism (SE-AFLP). This method allowed the differentiation of genera, species, and strains of pathogenic bacteria of Bacilli, Staphylococci, Yersinia, and Escherichia coli. These fingerprinting patterns obtained by SE-AFLP were simpler and easier to analyze than those by the traditional amplified fragment length polymorphism by double enzyme digestion. Nisin (E234) is added as a preservative to different types of foods, especially dairy products, around the world. Various detection methods exist for nisin, but they lack in sensitivity, speed or specificity. In this present study, a sensitive nisin-induced green fluorescent protein (GFPuv) bioassay was developed using the Lactococcus lactis two-component signal system NisRK and the nisin-inducible nisA promoter. The bioassay was extremely sensitive with detection limit of 10 pg/ml in culture supernatant. In addition, it was compatible for quantification from various food matrices, such as milk, salad dressings, processed cheese, liquid eggs, and canned tomatoes. Wine has good antimicrobial properties due to its alcohol concentration, low pH, and organic content and therefore often assumed to be microbially safe to consume. Another aim of this thesis was to study the microbiota of wines returned by customers complaining of food-poisoning symptoms. By partial 16S rRNA gene sequence analysis, ribotyping, and boar spermatozoa motility assay, it was identified that one of the wines contained a Bacillus simplex BAC91, which produced a heat-stable substance toxic to the mitochondria of sperm cells. The antibacterial activity of wine was tested on the vegetative cells and spores of B. simplex BAC91, B. cereus type strain ATCC 14579 and cereulide-producing B. cereus F4810/72. Although the vegetative cells and spores of B. simplex BAC91 were sensitive to the antimicrobial effects of wine, the spores of B. cereus strains ATCC 14579 and F4810/72 stayed viable for at least 4 months. According to these results, Bacillus spp., more specifically spores, can be a possible risk to the wine consumer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

African indigenous foods have received limited research. Most of these indigenous foods are fermented and they form part of the rich nutritional culture of many groups in African countries. The industrialization and commercialisation of these indigenous African fermented foods should be preceded by a thorough scientific knowledge of their processing which can be vital in the elimination of hunger and poverty. This study highlighted emerging developments and the microbiology of cereal-based and cassava-based food products that constitute a major part of the human diet in most African countries. In addition, investigations were also carried out on the coagulant of the Calotropis procera plant used in traditional production of Nigerian Wara cheese and on the effects of adding a nisin producing Lactococcus lactis strain originating from human milk to Nigerian Wara cheese. Fermented cereal-based food such as ogi utilize popular African and readily available grains maize, millet or sorghum as substrates and is popular as a weaning diet in infants. In this study, the bulkiness caused by starch gelatinization was solved by amylase treatments in the investigation on cooked and fermented oat bran porridge. A similar treatment could reduce the viscosity of any cereal porridge. The properties of the Sodom apple leaves (Calotropis procera) extract in cheesemaking were studied. C. procera was affected by monovalent (K+ and Na+) and divalent (Mg2+ and Ca2+) cations during coagulation. The rennet strength of this coagulant was found to be 7 % compared to animal rennet at 35 °C. Increasing the incubation temperature to 70 °C increased the rennet strength 28-fold. The molecular weight of the partially purified protease was determined by SDS-PAGE and was confirmed by Zymography to be approximately 60 kilodaltons. The high proteolytic activity at 70 °C supported the suitability of the protease enzyme as a coagulant in future commercial production of Nigerian Wara cheese. It was also possible to extend the shelf life of Wara cheese by a nisin producing lactic acid bacteria Lactococcus lactis LAC309. The levels of nisin in both whey and curd fractions of Wara were investigated, results showed a 3 log reduction of toxicogenic Bacillus licheniformis spiked on Wara after 3 days. These studies are the first in Finland to promote the advancement of scientific knowledge in African foods. Recognizing these indigenous food products and an efficient transfer of technology from the developed countries to industrialize them are necessary towards a successful realization of the United Nations Millenium Development Program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important safety aspect to be considered when foods are enriched with phytosterols and phytostanols is the oxidative stability of these lipid compounds, i.e. their resistance to oxidation and thus to the formation of oxidation products. This study concentrated on producing scientific data to support this safety evaluation process. In the absence of an official method for analyzing of phytosterol/stanol oxidation products, we first developed a new gas chromatographic - mass spectrometric (GC-MS) method. We then investigated factors affecting these compounds' oxidative stability in lipid-based food models in order to identify critical conditions under which significant oxidation reactions may occur. Finally, the oxidative stability of phytosterols and stanols in enriched foods during processing and storage was evaluated. Enriched foods covered a range of commercially available phytosterol/stanol ingredients, different heat treatments during food processing, and different multiphase food structures. The GC-MS method was a powerful tool for measuring the oxidative stability. Data obtained in food model studies revealed that the critical factors for the formation and distribution of the main secondary oxidation products were sterol structure, reaction temperature, reaction time, and lipid matrix composition. Under all conditions studied, phytostanols as saturated compounds were more stable than unsaturated phytosterols. In addition, esterification made phytosterols more reactive than free sterols at low temperatures, while at high temperatures the situation was the reverse. Generally, oxidation reactions were more significant at temperatures above 100°C. At lower temperatures, the significance of these reactions increased with increasing reaction time. The effect of lipid matrix composition was dependent on temperature; at temperatures above 140°C, phytosterols were more stable in an unsaturated lipid matrix, whereas below 140°C they were more stable in a saturated lipid matrix. At 140°C, phytosterols oxidized at the same rate in both matrices. Regardless of temperature, phytostanols oxidized more in an unsaturated lipid matrix. Generally, the distribution of oxidation products seemed to be associated with the phase of overall oxidation. 7-ketophytosterols accumulated when oxidation had not yet reached the dynamic state. Once this state was attained, the major products were 5,6-epoxyphytosterols and 7-hydroxyphytosterols. The changes observed in phytostanol oxidation products were not as informative since all stanol oxides quantified represented hydroxyl compounds. The formation of these secondary oxidation products did not account for all of the phytosterol/stanol losses observed during the heating experiments, indicating the presence of dimeric, oligomeric or other oxidation products, especially when free phytosterols and stanols were heated at high temperatures. Commercially available phytosterol/stanol ingredients were stable during such food processes as spray-drying and ultra high temperature (UHT)-type heating and subsequent long-term storage. Pan-frying, however, induced phytosterol oxidation and was classified as a rather deteriorative process. Overall, the findings indicated that although phytosterols and stanols are stable in normal food processing conditions, attention should be paid to their use in frying. Complex interactions between other food constituents also suggested that when new phytosterol-enriched foods are developed their oxidative stability must first be established. The results presented here will assist in choosing safe conditions for phytosterol/stanol enrichment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Taking the appropriation of objects as a theoretical starting point, this study makes a distinction between a conceptual and practical level of adopting new objects and products in everyday life. The study applies the concept of appropriation in social food research and examines consumers appropriation of functional foods, i.e., foods developed to improve health and well-being or reduce the risk of disease beyond the usual nutritional effects of foods. The study uses the concept of appropriation to understand the adoption and the process of making functional foods our own . First, the study focuses on the conceptual appropriation by analysing consumers interpretations and opinions on functional foods. Second, it analyses the use of functional foods and examines the role of sociodemographic and food- and health-related background factors in the use of functional foods. Both quantitative and qualitative data were used in the study. Altogether 1210 Finns representative of the population took part in a survey carried out in 2002 as computer-assisted telephone interviews (CATI). The survey examined the acceptability and use of functional foods in Finland. In 2004, eight focus group discussions were organised for 45 users and non-users of cholesterol-lowering spreads. The qualitative study focused on consumers interpretative perspectives on healthy eating and functional foods. The findings are reported in four original articles and a summary article. The results show that the appropriation of functional foods is a multifaceted phenomenon. The conceptual appropriation is related to consumers interpretations of functional foods in the context of healthy foods and healthy eating; their trust in the products, their manufacturers, research and control; and the relationship of functional foods and the ideal of natural foods. The analysis of the practical appropriation of four different types of foods marketed as functional showed that there are sociodemographic differences between users and non-users of the products, but more importantly, the differences are related to consumers food- and health-related views and practices. Consumers ways of appropriating functional foods in the conceptual and practical sense take shape in a complex web of ideas and everyday practices concerning food, health and eating as a whole. The results also indicate that the conceptual and practical appropriation are not necessarily uniform or coherent processes. Consumers interpret healthy eating and functional foods from a variety of perspectives and there is a multiplicity of rationales of using functional foods. Appropriation embraces many opposing dimensions simultaneously: good experiences and doubts, approval and criticism, expectations and things taken for granted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leuconostoc spp. are lactic acid bacteria (LAB) implicated in food spoilage, especially on refrigerated, modified atmosphere packaged (MAP) meats. The overall aim of this thesis was to learn more about Leuconostoc spp. as food spoilage organisms with a focus on commercial products where LAB spoilage is considered a problem and the main factor limiting shelf-life. Therefore, we aimed to identify Leuconostoc spp. involved in food spoilage, as well as to characterise the spoilage reactions they caused and their contamination sources during poultry meat processing. In addition, we examined the distribution of strains of Leuconostoc gasicomitatum in different food commodities. Finally, we analysed the genome content of L. gasicomitatum LMG 18811 with a special focus on metabolic pathways related to food spoilage. The findings show that Leuconostoc gelidum and L.gasicomitatum were responsible for the discoloration and off-odours developed in beef steaks. Together with Leuconostoc mesenteroides, these Leuconostoc spp., also cause spoilage of vegetable sausages. In contrast, we showed that Leuconostoc spp. are not important for the shelf-life or quality of non-marinated broiler products although, in marinated broiler fillet products, Leuconostoc spp., L.gasicomitatum in particular, are considered spoilage organisms. Furthermore, the findings of the contamination survey we carried out in a poultry processing plant indicated that spoilage Leuconostoc spp. are derived from the processing environment rather than from the broilers, and that air movement distributes psychrotrophic spoilage LAB, including leuconostocs, and has an important role in meat contamination during poultry processing. Pulsed-field gel electrophoresis (PFGE) based genotyping of L. gasicomitatum strains demonstrated that certain genotypes are common in various meat products. In contrast, genotypes associated with meat were not recovered in vegetable-based sources. This suggests that these two food categories either become contaminated with, or favour the growth of different genotypes. Furthermore, the results indicated that the meat processing environment contributes to L. gasicomitatum contamination as certain genotypes were repeatedly identified from products of the same processing plant. Finally, the sequenced and annotated genome of L.gasicomitatum LMG 18811 allowed us to identify the metabolic pathways and reactions resulting in food spoilage.