7 resultados para Brown, David
em Helda - Digital Repository of University of Helsinki
Self-love and self-liking in the moral and political philosophy of Bernard Mandeville and David Hume
Resumo:
This work offers a novel interpretation of David Hume’s (1711–1776) conception of the conjectural development of civil society and artificial moral institutions. It focuses on the social elements of Hume’s Treatise of human nature (1739–40) and the necessary connection between science of man and politeness, civilised monarchies, social distance and hierarchical structure of civil society. The study incorporates aspects of intellectual history, history of philosophy and book history. In order to understand David Hume’s thinking, the intellectual development of Bernard Mandeville (1670–1733) needs to be accounted for. When put into a historical perspective, the moral, political and social components of Treatise of human nature can be read in the context of a philosophical tradition, in which Mandeville plays a pivotal role. A distinctive character of Mandeville and Hume’s account of human nature and moral institutions was the introduction of a simple distinction between self-love and self-liking. The symmetric passions of self-interest and pride can only be controlled by the corresponding moral institutions. This is also the way in which we can say that moral institutions are drawn from human nature. In the case of self-love or self-interest, the corresponding moral institution is justice. Respectively, concerning self-liking or pride the moral institution is politeness. There is an explicit analogy between these moral institutions. If we do not understand this analogy, we do not understand the nature of either justice or politeness. The present work is divided into two parts. In the first part, ‘Intellectual development of Bernard Mandeville’, it is argued that the relevance of the paradigmatic change in Mandeville’s thinking has been missed. It draws a picture of Mandeville turning from the Hobbism of The Fable of the Bees to an original theory of civil society put forward in his later works. In order to make this change more apparent, Mandeville’s career and the publishing history of The Fable of the Bees are examined comprehensively. This interpretation, based partly on previously unknown sources, challenges F. B. Kaye’s influential decision to publish the two parts of The Fable of the Bees as a uniform work of two volumes. The main relevance, however, of the ‘Intellectual development of Mandeville’ is to function as the context for the young Hume. The second part of the work, ‘David Hume and Greatness of mind’, explores in philosophical detail the social theory of the Treatise and politics and the science of man in his Essays. This part will also reveal the relevance of Greatness of mind as a general concept for David Hume’s moral and political philosophy.
Resumo:
Large carnivore populations are currently recovering from past extirpation efforts and expanding back into their original habitats. At the same time human activities have resulted in very few wilderness areas left with suitable habitats and size large enough to maintain populations of large carnivores without human contact. Consequently the long-term future of large carnivores depends on their successful integration into landscapes where humans live. Thus, understanding their behaviour and interaction with surrounding habitats is of utmost importance in the development of management strategies for large carnivores. This applies also to brown bears (Ursus arctos) that were almost exterminated from Scandinavia and Finland at the turn of the century, but are now expanding their range with the current population estimates being approximately 2600 bears in Scandinavia and 840 in Finland. This thesis focuses on the large-scale habitat use and population dynamics of brown bears in Scandinavia with the objective to develop modelling approaches that support the management of bear populations. Habitat analysis shows that bear home ranges occur mainly in forested areas with a low level of human influence relative to surrounding areas. Habitat modelling based on these findings allows identification and quantification of the potentially suitable areas for bears in Scandinavia. Additionally, this thesis presents novel improvements to home range estimation that enable realistic estimates of the effective area required for the bears to establish a home range. This is achieved through fitting to the radio-tracking data to establish the amount of temporal autocorrelation and the proportion of time spent in different habitat types. Together these form a basis for the landscape-level management of the expanding population. Successful management of bears requires also assessment of the consequences of harvest on the population viability. An individual-based simulation model, accounting for the sexually selected infanticide, was used to investigate the possibility of increasing the harvest using different hunting strategies, such as trophy harvest of males. The results indicated that the population can sustain twice the current harvest rate. However, harvest should be changed gradually while carefully monitoring the population growth as some effects of increased harvest may manifest themselves only after a time-delay. The results and methodological improvements in this thesis can be applied to the Finnish bear population and to other large carnivores. They provide grounds for the further development of spatially-realistic management-oriented models of brow bear dynamics that can make projections of the future distribution of bears while accounting for the development of human activities.
Resumo:
According to certain arguments, computation is observer-relative either in the sense that many physical systems implement many computations (Hilary Putnam), or in the sense that almost all physical systems implement all computations (John Searle). If sound, these arguments have a potentially devastating consequence for the computational theory of mind: if arbitrary physical systems can be seen to implement arbitrary computations, the notion of computation seems to lose all explanatory power as far as brains and minds are concerned. David Chalmers and B. Jack Copeland have attempted to counter these relativist arguments by placing certain constraints on the definition of implementation. In this thesis, I examine their proposals and find both wanting in some respects. During the course of this examination, I give a formal definition of the class of combinatorial-state automata , upon which Chalmers s account of implementation is based. I show that this definition implies two theorems (one an observation due to Curtis Brown) concerning the computational power of combinatorial-state automata, theorems which speak against founding the theory of implementation upon this formalism. Toward the end of the thesis, I sketch a definition of the implementation of Turing machines in dynamical systems, and offer this as an alternative to Chalmers s and Copeland s accounts of implementation. I demonstrate that the definition does not imply Searle s claim for the universal implementation of computations. However, the definition may support claims that are weaker than Searle s, yet still troubling to the computationalist. There remains a kernel of relativity in implementation at any rate, since the interpretation of physical systems seems itself to be an observer-relative matter, to some degree at least. This observation helps clarify the role the notion of computation can play in cognitive science. Specifically, I will argue that the notion should be conceived as an instrumental rather than as a fundamental or foundational one.
Resumo:
Cassava brown streak disease (CBSD) was described for the first time in Tanganyika (now Tanzania) about seven decades ago. Tanganyika (now Tanzania) about seven decades ago. It was endemic in the lowland areas of East Africa and inland parts of Malawi and caused by Cassava brown streak virus (CBSV; genus Ipomovirus; Potyviridae). However, in 1990s CBSD was observed at high altitude areas in Uganda. The causes for spread to new locations were not known.The present work was thus initiated to generate information on genetic variability, clarify the taxonomy of the virus or viruses associated with CBSD in Eastern Africa as well as to understand the evolutionary forces acting on their genes. It also sought to develop a molecular based diagnostic tool for detection of CBSD-associated virus isolates. Comparison of the CP-encoding sequences of CBSD-associated virus isolates collected from Uganda and north-western Tanzania in 2007 and the partial sequences available in Genbank revealed occurrence of two genetically distinct groups of isolates. Two isolates were selected to represent the two groups. The complete genomes of isolates MLB3 (TZ:Mlb3:07) and Kor6 (TZ:Kor6:08) obtained from North-Western (Kagera) and North-Eastern (Tanga) Tanzania, respectively, were sequenced. The genomes were 9069 and 8995 nucleotides (nt), respectively. They translated into polyproteins that were predicted to yield ten mature proteins after cleavage. Nine proteins were typical in the family Potyviridae, namely P1, P3, 6K1, CI, 6K2, VPg, NIa-Pro, NIb and CP, but the viruses did not contain HC-Pro. Interestingly, genomes of both isolates contained a Maf/HAM1-like sequence (HAM1h; 678 nucleotides, 25 kDa) recombined between the NIb and CP domains in the 3’-proximal part of the genomes. HAM1h was also identified in Euphorbia ringspot virus (EuRSV) whose sequence was in GenBank. The HAM1 gene is widely spread in both prokaryotes and eukaryotes. In yeast (Saccharomyces cerevisiae) it is known to be a nucleoside triphosphate (NTP) pyrophosphatase. Novel information was obtained on the structural variation at the N-termini of polyproteins of viruses in the genus Ipomovirus. Cucumber vein yellowing virus (CVYV) and Squash vein yellowing virus (SqVYV) contain a duplicated P1 (P1a and P1b) but lack the HC-Pro. On the other hand, Sweet potato mild mottle virus (SPMMV), has a single but large P1 and has HC-Pro. Both virus isolates (TZ:Mlb3:07 & TZ:Kor6:08) characterized in this study contained a single P1 and lacked the HC-Pro which indicates unique evolution in the family Potyviridae. Comparison of 12 complete genomes of CBSD-associated viruses which included two genomes characterized in this study, revealed genetic identity of 69.0–70.3% (nt) and amino acid (aa) identities of 73.6–74.4% at polyprotein level. Comparison was also made among 68 complete CP sequences, which indicated 69.0-70.3 and 73.6-74.4 % identity at nt and aa levels, respectively. The genetic variation was large enough for dermacation of CBSD-associated virus isolates into two distinct species. The name CBSV was retained for isolates that were related to CBSV isolates available in database whereas the new virus described for the first time in this study was named Ugandan cassava brown streak virus (UCBSV) by the International Committee on Virus Taxonomy (ICTV). The isolates TZ:Mlb3:07 and TZ:Kor6:08 belong to UCBSV and CBSV, respectively. The isolates of CBSV and UCBSV were 79.3-95.5% and 86.3-99.3 % identitical at nt level, respectively, suggesting more variation amongst CBSV isolates. The main sources of variation in plant viruses are mutations and recombination. Signals for recombination events were detected in 50% of isolates of each virus. Recombination events were detected in coding and non-coding (3’-UTR) sequences except in the 5’UTR and P3. There was no evidence for recombination between isolates of CBSV and UCBSV. The non-synonomous (dN) to synonomous (dS) nucleotide substitution ratio (ω) for the HAM1h and CP domains of both viruses were ≤ 0.184 suggesting that most sites of these proteins were evolving under strong purifying selection. However, there were individual amino acid sites that were submitted to adaptive evolution. For instance, adaptive evolution was detected in the HAM1h of UCBSV (n=15) where 12 aa sites were under positive selection (P< 0.05) but not in CBSV (n=12). The CP of CBSV (n=23) contained 12 aa sites (p<0.01) while only 5 aa sites in the CP gene of UCBSV were predicted to be submitted to positive selection pressure (p<0.01). The advantages offered by the aa sites under positive selection could not be established but occurrence of such sites in the terminal ends of UCBSV-HAMIh, for example, was interpreted as a requirement for proteolysis during polyprotein processing. Two different primer pairs that simultaneously detect UCBSV and CBSV isolates were developed in this study. They were used successfully to study distribution of CBSV, UCBSV and their mixed infections in Tanzania and Uganda. It was established that the two viruses co-infect cassava and that incidences of co-infection could be as high as 50% around Lake Victoria on the Tanzanian side. Furthermore, it was revealed for the first time that both UCBSV and CBSV were widely distributed in Eastern Africa. The primer pair was also used to confirm infection in a close relative of cassava, Manihot glaziovii (Müller Arg.) with CBSV. DNA barcoding of M. glaziovii was done by sequencing the matK gene. Two out of seven M. glaziovii from the coastal areas of Korogwe and Kibaha in north eastern Tanzania were shown to be infected by CBSV but not UCBSV isolates. Detection in M. glaziovii has an implication in control and management of CBSD as it is likely to serve as virus reservoir. This study has contributed to the understanding of evolution of CBSV and UCBSV, which cause CBSD epidemic in Eastern Africa. The detection tools developed in this work will be useful in plant breeding, verification of the phytosanitary status of materials in regional and international movement of germplasm, and in all diagnostic activities related to management of CBSD. Whereas there are still many issues to be resolved such as the function and biological significance of HAM1h and its origin, this work has laid a foundation upon which the studies on these aspects can be based.